scholarly journals Understanding the Rapid Precipitation Response to CO2 and Aerosol Forcing on a Regional Scale*

2016 ◽  
Vol 29 (2) ◽  
pp. 583-594 ◽  
Author(s):  
Thomas B. Richardson ◽  
Piers M. Forster ◽  
Timothy Andrews ◽  
Doug J. Parker

Abstract Precipitation exhibits a significant rapid adjustment in response to forcing, which is important for understanding long-term climate change. In this study, fixed sea surface temperature (SST) simulations are used to analyze the spatial pattern of the rapid precipitation response. Three different forcing scenarios are investigated using data obtained from phase 5 of CMIP (CMIP5): an abrupt quadrupling of CO2, an abrupt increase in sulfate, and an abrupt increase in all anthropogenic aerosol levels from preindustrial to present day. Analysis of the local energy budget is used to understand the mechanisms that drive the observed changes. It is found that the spatial pattern of the rapid precipitation response to forcing is primarily driven by rapid land surface temperature change, rather than the change in tropospheric diabatic cooling. As a result, the pattern of response due to increased CO2 opposes that due to sulfate and all anthropogenic aerosols, because of the opposing surface forcing. The rapid regional precipitation response to increased CO2 is robust among models, implying that the uncertainty in long-term changes is mainly associated with the response to SST-mediated feedbacks. Increased CO2 causes rapid warming of the land surface, which destabilizes the troposphere, enhancing convection and precipitation over land in the tropics. Precipitation is reduced over most tropical oceans because of a weakening of overturning circulation and a general shift of convection to over land. Over most land regions in the midlatitudes, circulation changes are small. Reduced tropospheric cooling therefore leads to drying over many midlatitude land regions.

2021 ◽  
Vol 13 (8) ◽  
pp. 1516
Author(s):  
Boyang Li ◽  
Yaokui Cui ◽  
Xiaozhuang Geng ◽  
Huan Li

Evapotranspiration (ET) of soil-vegetation system is the main process of the water and energy exchange between the atmosphere and the land surface. Spatio-temporal continuous ET is vitally important to agriculture and ecological applications. Surface temperature and vegetation index (Ts-VI) triangle ET model based on remote sensing land surface temperature (LST) is widely used to monitor the land surface ET. However, a large number of missing data caused by the presence of clouds always reduces the availability of the main parameter LST, thus making the remote sensing-based ET estimation unavailable. In this paper, a method to improve the availability of ET estimates from Ts-VI model is proposed. Firstly, continuous LST product of the time series is obtained using a reconstruction algorithm, and then, the reconstructed LST is applied to the estimate ET using the Ts-VI model. The validation in the Heihe River Basin from 2009 to 2011 showed that the availability of ET estimates is improved from 25 days per year (d/yr) to 141 d/yr. Compared with the in situ data, a very good performance of the estimated ET is found with RMSE 1.23 mm/day and R2 0.6257 at point scale and RMSE 0.32 mm/day and R2 0.8556 at regional scale. This will improve the understanding of the water and energy exchange between the atmosphere and the land surface, especially under cloudy conditions.


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Lahouari Bounoua ◽  
Kurtis Thome ◽  
Joseph Nigro

Urbanization is a complex land transformation not explicitly resolved within large-scale climate models. Long-term timeseries of high-resolution satellite data are essential to characterize urbanization within land surface models and to assess its contribution to surface temperature changes. The potential for additional surface warming from urbanization-induced land use change is investigated and decoupled from that due to change in climate over the continental US using a decadal timescale. We show that, aggregated over the US, the summer mean urban-induced surface temperature increased by 0.15 °C, with a warming of 0.24 °C in cities built in vegetated areas and a cooling of 0.25 °C in cities built in non-vegetated arid areas. This temperature change is comparable in magnitude to the 0.13 °C/decade global warming trend observed over the last 50 years caused by increased CO2. We also show that the effect of urban-induced change on surface temperature is felt above and beyond that of the CO2 effect. Our results suggest that climate mitigation policies must consider urbanization feedback to put a limit on the worldwide mean temperature increase.


2019 ◽  
Vol 11 (17) ◽  
pp. 2016
Author(s):  
Lijuan Wang ◽  
Ni Guo ◽  
Wei Wang ◽  
Hongchao Zuo

FY-4A is a second generation of geostationary orbiting meteorological satellite, and the successful launch of FY-4A satellite provides a new opportunity to obtain diurnal variation of land surface temperature (LST). In this paper, different underlying surfaces-observed data were applied to evaluate the applicability of the local split-window algorithm for FY-4A, and the local split-window algorithm parameters were optimized by the artificial intelligent particle swarm optimization (PSO) algorithm to improve the accuracy of retrieved LST. Results show that the retrieved LST can efficiently reproduce the diurnal variation characteristics of LST. However, the estimated values deviate hugely from the observed values when the local split-window algorithms are directly used to process the FY-4A satellite data, and the root mean square errors (RMSEs) are approximately 6K. The accuracy of the retrieved LST cannot be effectively improved by merely modifying the emissivity-estimated model or optimizing the algorithm. Based on the measured emissivity, the RMSE of LST retrieved by the optimized local split-window algorithm is reduced to 3.45 K. The local split-window algorithm is a simple and easy retrieval approach that can quickly retrieve LST on a regional scale and promote the application of FY-4A satellite data in related fields.


Author(s):  
W. E. Li ◽  
X. Q. Wang ◽  
H. Su

Land surface temperature (LST) is a key parameter of land surface physical processes on global and regional scales, linking the heat fluxes and interactions between the ground and atmosphere. Based on MODIS 8-day LST products (MOD11A2) from the split-window algorithms, we constructed and obtained the monthly and annual LST dataset of Fujian Province from 2000 to 2015. Then, we analyzed the monthly and yearly time series LST data and further investigated the LST distribution and its evolution features. The average LST of Fujian Province reached the highest in July, while the lowest in January. The monthly and annual LST time series present a significantly periodic features (annual and interannual) from 2000 to 2015. The spatial distribution showed that the LST in North and West was lower than South and East in Fujian Province. With the rapid development and urbanization of the coastal area in Fujian Province, the LST in coastal urban region was significantly higher than that in mountainous rural region. The LST distributions might affected by the climate, topography and land cover types. The spatio-temporal distribution characteristics of LST could provide good references for the agricultural layout and environment monitoring in Fujian Province.


2021 ◽  
Author(s):  
Matthews Nyasulu ◽  
Md. Mozammel Haque ◽  
Bathsheba Musonda ◽  
Cao Fang

Abstract Recent studies have revealed significant impacts of increased concentration of anthropogenic aerosols in the atmosphere to both climate and human health. Southeast Africa is one of the regions where studies related to atmospheric aerosols remain scant, causing high uncertainty in predicting and understanding the impacts of these aerosols to both climate and human health. The present study therefore has investigated the long term spatial-temporal distribution of atmospheric aerosols, trends, its relationship with cloud properties and the associated atmospheric circulation over the region. High concentration of aerosol has been detected during the dry months of September to November (SON) while low during March to May (MAM) and June-July (JJA) seasons in most areas. Highest 550 was recorded in areas with low elevation such as over Lake Malawi, Zambezi valley and along the western coast of the Indian Ocean. The average of the detected concentration is however low as compared to highly polluted regions of the globe. Statistical analyses revealed insignificant change of AOD550 in most areas between 2002 and 2020 time period. The study has also revealed seasonality of aerosol distribution highly influenced by changes in atmospheric circulation. Burning of biomass during dry months such bush fires and burning of crop residues remain the major source of anthropogenic aerosol concentration over Southeast Africa hence needs to be controlled.


2021 ◽  
Author(s):  
Jin Ma ◽  
Ji Zhou

<p>As an important indicator of land-atmosphere energy interaction, land surface temperature (LST) plays an important role in the research of climate change, hydrology, and various land surface processes. Compared with traditional ground-based observation, satellite remote sensing provides the possibility to retrieve LST more efficiently over a global scale. Since the lack of global LST before, Ma et al., (2020) released a global 0.05 ×0.05  long-term (1981-2000) LST based on NOAA-7/9/11/14 AVHRR. The dataset includes three layers: (1) instantaneous LST, a product generated based on an ensemble of several split-window algorithms with a random forest (RF-SWA); (2) orbital-drift-corrected (ODC) LST, a drift-corrected version of RF-SWA LST at 14:30 solar time; and (3) monthly averages of ODC LST. To meet the requirement of the long-term application, e.g. climate change, the period of the LST is extended from 1981-2000 to 1981-2020 in this study. The LST from 2001 to 2020 are retrieved from NOAA-16/18/19 AVHRR with the same algorithm for NOAA-7/8/11/14 AVHRR. The train and test results based on the simulation data from SeeBor and TIGR atmospheric profiles show that the accuracy of the RF-SWA method for the three sensors is consistent with the previous four sensors, i.e. the mean bias error and standard deviation less than 0.10 K and 1.10 K, respectively, under the assumption that the maximum emissivity and water vapor content uncertainties are 0.04 and 1.0 g/cm<sup>2</sup>, respectively. The preliminary validation against <em>in-situ</em> LST also shows a similar accuracy, indicating that the accuracy of LST from 1981 to 2020 are consistent with each other. In the generation code, the new LST has been improved in terms of land surface emissivity estimation, identification of cloud pixel, and the ODC method in order to generate a more reliable LST dataset. Up to now, the new version LST product (1981-2020) is under generating and will be released soon in support of the scientific research community.</p>


2020 ◽  
Vol 12 (5) ◽  
pp. 791 ◽  
Author(s):  
Jingjing Yang ◽  
Si-Bo Duan ◽  
Xiaoyu Zhang ◽  
Penghai Wu ◽  
Cheng Huang ◽  
...  

Land surface temperature (LST) is vital for studies of hydrology, ecology, climatology, and environmental monitoring. The radiative-transfer-equation-based single-channel algorithm, in conjunction with the atmospheric profile, is regarded as the most suitable one with which to produce long-term time series LST products from Landsat thermal infrared (TIR) data. In this study, the performances of seven atmospheric profiles from different sources (the MODerate-resolution Imaging Spectroradiomete atmospheric profile product (MYD07), the Atmospheric Infrared Sounder atmospheric profile product (AIRS), the European Centre for Medium-range Weather Forecasts (ECMWF), the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2), the National Centers for Environmental Prediction (NCEP)/Global Forecasting System (GFS), NCEP/Final Operational Global Analysis (FNL), and NCEP/Department of Energy (DOE)) were comprehensively evaluated in the single-channel algorithm for LST retrieval from Landsat 8 TIR data. Results showed that when compared with the radio sounding profile downloaded from the University of Wyoming (UWYO), the worst accuracies of atmospheric parameters were obtained for the MYD07 profile. Furthermore, the root-mean-square error (RMSE) values (approximately 0.5 K) of the retrieved LST when using the ECMWF, MERRA2, NCEP/GFS, and NCEP/FNL profiles were smaller than those but greater than 0.8 K when the MYD07, AIRS, and NCEP/DOE profiles were used. Compared with the in situ LST measurements that were collected at the Hailar, Urad Front Banner, and Wuhai sites, the RMSE values of the LST that were retrieved by using the ECMWF, MERRA2, NCEP/GFS, and NCEP/FNL profiles were approximately 1.0 K. The largest discrepancy between the retrieved and in situ LST was obtained for the NCEP/DOE profile, with an RMSE value of approximately 1.5 K. The results reveal that the ECMWF, MERRA2, NCEP/GFS, and NCEP/FNL profiles have great potential to perform accurate atmospheric correction and generate long-term time series LST products from Landsat TIR data by using a single-channel algorithm.


2020 ◽  
Vol 12 (24) ◽  
pp. 4067
Author(s):  
Thanhtung Dang ◽  
Peng Yue ◽  
Felix Bachofer ◽  
Michael Wang ◽  
Mingda Zhang

Global warming-induced climate change evolved to be one of the most important research topics in Earth System Sciences, where remote sensing-based methods have shown great potential for detecting spatial temperature changes. This study utilized a time series of Landsat images to investigate the Land Surface Temperature (LST) of dry seasons between 1989 and 2019 in the Bac Binh district, Binh Thuan province, Vietnam. Our study aims to monitor LST change, and its relationship to land-cover change during the last 30 years. The results for the study area show that the share of Green Vegetation coverage has decreased rapidly for the dry season in recent years. The area covered by vegetation shrank between 1989 and 2019 by 29.44%. Our findings show that the LST increase and decrease trend is clearly related to the change of the main land-cover classes, namely Bare Land and Green Vegetation. For the same period, we find an average increase of absolute mean LST of 0.03 °C per year for over thirty years across all land-cover classes. For the dry season in 2005, the LST was extraordinarily high and the area with a LST exceeding 40 °C covered 64.10% of the total area. We expect that methodological approach and the findings can be applied to study change in LST, land-cover, and can contribute to climate change monitoring and forecasting of impacts in comparable regions.


Sign in / Sign up

Export Citation Format

Share Document