scholarly journals Intensification of the Western North Pacific Anticyclone Response to the Short Decaying El Niño Event due to Greenhouse Warming

2016 ◽  
Vol 29 (10) ◽  
pp. 3607-3627 ◽  
Author(s):  
Wei Chen ◽  
June-Yi Lee ◽  
Kyung-Ja Ha ◽  
Kyung-Sook Yun ◽  
Riyu Lu

Abstract Two types of El Niño evolution have been identified in terms of the lengths of their decaying phases: the first type is a short decaying El Niño that terminates in the following summer after the mature phase, and the second type is a long decaying one that persists until the subsequent winter. The responses of the western North Pacific anticyclone (WNPAC) anomaly to the two types of evolution are remarkably different. Using experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5), this study investigates how well climate models reproduce the two types of El Niño evolution and their impacts on the WNPAC in the historical period (1950–2005) and how they will change in the future under anthropogenic global warming. To reduce uncertainty in future projection, the nine best models are selected based on their performance in simulating El Niño evolution. In the historical run, the nine best models’ multimodel ensemble (B9MME) well reproduces the enhanced (weakened) WNPAC that is associated with the short (long) decaying El Niño. The comparison between results of the historical run for 1950–2005 and the representative concentration pathway 4.5 run for 2050–99 reveals that individual models and the B9MME tend to project no significant changes in the two types of El Niño evolution for the latter half of the twenty-first century. However, the WNPAC response to the short decaying El Niño is considerably intensified, being associated with the enhanced negative precipitation anomaly response over the equatorial central Pacific. This enhancement is attributable to the robust increase in mean and interannual variability of precipitation over the equatorial central Pacific under global warming.

2021 ◽  
pp. 1-49
Author(s):  
Mingna Wu ◽  
Tianjun Zhou ◽  
Xiaolong Chen

AbstractThe western North Pacific anomalous anticyclone (WNPAC) is a key bridge that links El Niño and East Asian climate variability. Future projections of ENSO-related WNPAC changes under global warming are highly uncertain across climate models. Based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project, we investigate the effects of internal variability on the El Niño-related WNPAC projection. Here, we first develop a decomposition method to separate the contributions of El Niño amplitude change and non-amplitude change from the leading uncertainty in the El Niño-related WNPAC projection. Based on the decomposition, approximately 23% of the uncertainty in the El Niño-related WNPAC projection is attributed to the El Niño amplitude change, while the remaining 77% is from the non-amplitude change, which is mainly related to the change in the El Niño decaying pace. A larger (smaller) El Niño amplitude can enhance (weaken) the WNPAC through a stronger (weaker) tropical Indian Ocean (TIO) capacitor effect. For non-amplitude change, a faster (slower) El Niño decaying pace can also enhance (weaken) the WNPAC through descending Rossby waves in response to cold sea surface temperature anomalies (SSTA) over the tropical central-eastern Pacific. The decomposition method can be generalized to investigate the sources of uncertainty related to El Niño properties in climate projections and to help improve the understanding of changes in the interannual variability of East Asian-western Pacific climate under global warming.


2020 ◽  
Vol 33 (8) ◽  
pp. 3271-3288
Author(s):  
Juan Feng ◽  
Wen Chen ◽  
Xiaocong Wang

AbstractThe El Niño Modoki–induced anomalous western North Pacific anticyclone (WNPAC) undergoes an interesting reintensification process in the El Niño Modoki decaying summer, the period when El Niño Modoki decays but warm sea surface temperature (SST) anomalies over the tropical North Atlantic (TNA) and cold SST anomalies over the central-eastern Pacific (CEP) dominate. In this study, the region (TNA or CEP) in which the SST anomalies exert a relatively important influence on reintensification of the WNPAC is investigated. Observational analysis demonstrates that when only anomalous CEP SST cooling occurs, the WNPAC experiences a weak reintensification. In contrast, when only anomalous TNA SST warming emerges, the WNPAC experiences a remarkable reintensification. Numerical simulation analysis demonstrates that even though the same magnitude of CEP SST cooling and TNA warming is respectively set to force the atmospheric general circulation model, the response of the WNPAC is still much stronger in the TNA warming experiment than in the CEP cooling experiment. Further analysis demonstrates that this difference is caused by the distinct location of the effective tropical forcing between the CEP SST cooling and TNA SST warming for producing a WNPAC. The CEP cooling-induced effective anomalous diabatic cooling is located in the central Pacific, by which the forced anticyclone becomes gradually weak from the central Pacific to the western North Pacific. Thus, a weak WNPAC is produced. In contrast, as the TNA SST warming–induced effective anomalous diabatic cooling is just located in the western North Pacific via a Kelvin wave–induced Ekman divergence process, the forced anticyclone is significant and powerful in the western North Pacific.


2019 ◽  
Vol 32 (23) ◽  
pp. 8021-8045 ◽  
Author(s):  
Yumi Choi ◽  
Kyung-Ja Ha ◽  
Fei-Fei Jin

Abstract Both the impacts of two types of El Niño on the western North Pacific (WNP) tropical cyclone (TC) activity and the seasonality in the relationship between genesis potential index (GPI) and El Niño–Southern Oscillation (ENSO) are investigated. The ENSO-induced GPI change over the northwestern (southeastern) part of the WNP is mostly attributed to the relative humidity (absolute vorticity) term, revealing a distinct meridional and zonal asymmetry in summer and fall, respectively. The seasonal change in ENSO (background states) from summer to fall is responsible for the seasonal change in GPI anomalies south of 20°N (over the northeastern part of the WNP). The downdraft induced by the strong upper-level convergence in the eastern Pacific (EP)-type El Niño and both the northwestward-shifted relative vorticity and northward-extended convection over the southeastern part of the WNP in the central Pacific (CP)-type El Niño lead to distinct TC impacts over East Asia (EA). The southward movement of genesis location of TCs and increased westward-moving TCs account for the enhanced strong typhoon activity for the EP-type El Niño in summer. In fall the downdraft and anomalous anticyclonic steering flows over the western part of the WNP remarkably decrease TC impacts over EA. The enhanced moist static energy and midlevel upward motion over the eastern part of the WNP under the northern off-equatorial sea surface temperature warming as well as longer passage of TCs toward EA are responsible for the enhanced typhoon activity for the CP-type El Niño. It is thus important to consider the seasonality and El Niño pattern diversity to explore the El Niño–induced TC impacts over EA.


2020 ◽  
Vol 33 (23) ◽  
pp. 9985-10002
Author(s):  
Ruyan Chen ◽  
Isla R. Simpson ◽  
Clara Deser ◽  
Bin Wang

AbstractThe wintertime ENSO teleconnection over the North Pacific region consists of an intensified (weakened) low pressure center during El Niño (La Niña) events both in observations and in climate models. Here, it is demonstrated that this teleconnection persists too strongly into late winter and spring in the Community Earth System Model (CESM). This discrepancy arises in both fully coupled and atmosphere-only configurations, when observed SSTs are specified, and is shown to be robust when accounting for the sampling uncertainty due to internal variability. Furthermore, a similar problem is found in many other models from piControl simulations of the Coupled Model Intercomparison Project (23 out of 43 in phase 5 and 11 out of 20 in phase 6). The implications of this bias for the simulation of surface climate anomalies over North America are assessed. The overall effect on the ENSO composite field (El Niño minus La Niña) resembles an overly prolonged influence of ENSO into the spring with anomalously high temperatures over Alaska and western Canada, and wet (dry) biases over California (southwest Canada). Further studies are still needed to disentangle the relative roles played by diabatic heating, background flow, and other possible contributions in determining the overly strong springtime ENSO teleconnection intensity over the North Pacific.


2015 ◽  
Vol 28 (3) ◽  
pp. 998-1015 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Jong-Seong Kug

Abstract In this study, a new methodology is developed to improve the climate simulation of state-of-the-art coupled global climate models (GCMs), by a postprocessing based on the intermodel diversity. Based on the close connection between the interannual variability and climatological states, the distinctive relation between the intermodel diversity of the interannual variability and that of the basic state is found. Based on this relation, the simulated interannual variabilities can be improved, by correcting their climatological bias. To test this methodology, the dominant intermodel difference in precipitation responses during El Niño–Southern Oscillation (ENSO) is investigated, and its relationship with climatological state. It is found that the dominant intermodel diversity of the ENSO precipitation in phase 5 of the Coupled Model Intercomparison Project (CMIP5) is associated with the zonal shift of the positive precipitation center during El Niño. This dominant intermodel difference is significantly correlated with the basic states. The models with wetter (dryer) climatology than the climatology of the multimodel ensemble (MME) over the central Pacific tend to shift positive ENSO precipitation anomalies to the east (west). Based on the model’s systematic errors in atmospheric ENSO response and bias, the models with better climatological state tend to simulate more realistic atmospheric ENSO responses. Therefore, the statistical method to correct the ENSO response mostly improves the ENSO response. After the statistical correction, simulating quality of the MME ENSO precipitation is distinctively improved. These results provide a possibility that the present methodology can be also applied to improving climate projection and seasonal climate prediction.


2004 ◽  
Vol 17 (23) ◽  
pp. 4590-4602 ◽  
Author(s):  
Johnny C. L. Chan ◽  
Kin Sik Liu

Abstract Based on results from climate model simulations, many researchers have suggested that because of global warming, the sea surface temperature (SST) will likely increase, which will then lead to an increase in the intensity of tropical cyclones (TCs). This paper reports results of a study of the relationship between SST and observed typhoon activity (which is used as a proxy for the intensity of TCs averaged over a season) over the western North Pacific (WNP) for the past 40 yr. The average typhoon activity over a season is found to have no significant relationship with SST in the WNP but increases when the SST over the equatorial eastern Pacific Ocean is above normal. The mean annual typhoon activity is generally higher (lower) during an El Niño (La Niña) year. Such interannual variations of typhoon activity appear to be largely constrained by the large-scale atmospheric factors that are closely related to the El Niño–Southern Oscillation (ENSO) phenomenon. These large-scale dynamic and thermodynamic factors include low-level relative vorticity, vertical wind shear, and moist static energy. Such results are shown to be physically consistent with one another and with those from previous studies on the interannual variations of TC activity. The results emphasize the danger of drawing conclusions about future TC intensity based on current climate model simulations that are not designed to make such predictions.


2020 ◽  
Vol 33 (17) ◽  
pp. 7371-7389
Author(s):  
Inmaculada Vega ◽  
Pedro Ribera ◽  
David Gallego

ABSTRACTThe western North Pacific summer monsoon (WNPSM) onset and withdrawal dates as well as its breaks have been determined throughout the 1949–2014 period by defining the monsoon daily directional index (MDDI). This index, developed exclusively with wind direction observations, is an upgrade of the monthly western North Pacific directional index. The onset date shows a high interannual variability, varying between early May and early August, whereas the WNPSM withdrawal shows a lower interannual variability, occurring between October and mid-November. The MDDI reflects the multibreak character of the WNPSM. Breaks, which tend to last a few weeks, are more likely to happen from mid-August to early September and from late June to mid-July. This bimodal distribution shows decadal variability. In addition, the monsoon dates determined by the MDDI show very good agreement with relationships previously described in literature, such as the influence of tropical Pacific SST on the monsoon onset/withdrawal and changes in tropical cyclone (TC) tracks related to monsoon breaks. The WNPSM tends to start earlier (later) and finish later (earlier) under eastern Pacific (EP) La Niña (El Niño) conditions, especially from the 1980s on. Central Pacific (CP) ENSO is also associated with the monsoon withdrawal, which is advanced (delayed) under CP El Niño (La Niña). TCs tend to move from the Philippine Sea to the South China Sea during active monsoon days whereas they tend to reach higher latitudes during inactive monsoon days, especially in August and July.


2016 ◽  
Vol 29 (18) ◽  
pp. 6401-6423 ◽  
Author(s):  
Rongqing Han ◽  
Hui Wang ◽  
Zeng-Zhen Hu ◽  
Arun Kumar ◽  
Weijing Li ◽  
...  

Abstract An assessment of simulations of the interannual variability of tropical cyclones (TCs) over the western North Pacific (WNP) and its association with El Niño–Southern Oscillation (ENSO), as well as a subsequent diagnosis for possible causes of model biases generated from simulated large-scale climate conditions, are documented in the paper. The model experiments are carried out by the Hurricane Work Group under the U.S. Climate Variability and Predictability Research Program (CLIVAR) using five global climate models (GCMs) with a total of 16 ensemble members forced by the observed sea surface temperature and spanning the 28-yr period from 1982 to 2009. The results show GISS and GFDL model ensemble means best simulate the interannual variability of TCs, and the multimodel ensemble mean (MME) follows. Also, the MME has the closest climate mean annual number of WNP TCs and the smallest root-mean-square error to the observation. Most GCMs can simulate the interannual variability of WNP TCs well, with stronger TC activities during two types of El Niño—namely, eastern Pacific (EP) and central Pacific (CP) El Niño—and weaker activity during La Niña. However, none of the models capture the differences in TC activity between EP and CP El Niño as are shown in observations. The inability of models to distinguish the differences in TC activities between the two types of El Niño events may be due to the bias of the models in response to the shift of tropical heating associated with CP El Niño.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Yuhang Liu ◽  
Sun-Kwon Yoon ◽  
Jong-Suk Kim ◽  
Lihua Xiong ◽  
Joo-Heon Lee

This study investigated the effects of El Niño events on tropical cyclone (TC) characteristics over the western North Pacific (WNP) region. First, TC characteristics associated with large-scale atmospheric phenomena (i.e., genesis position, frequency, track, intensity, and duration) were investigated in the WNP in relation to various types of El Niño events—moderate central Pacific (MCP), moderate eastern Pacific (MEP), and strong basin-wide (SBW). Subsequently, the seasonal and regional variability of TC-induced rainfall across China was analyzed to compare precipitation patterns under the three El Niño types. When extreme El Niño events of varying degrees occurred, the local rainfall varied during the developmental and decaying years. The development of MEP and SBW was associated with a distinct change in TC-induced rainfall. During MEP development, TC-induced rainfall occurred in eastern and northeastern China, whereas in SBW, TC-induced heavy rainfall occurred in southwest China. During SBW development, the southwestern region was affected by TCs over a long period, with the eastern and northeastern regions being affected significantly fewer days. During El Niño decay, coastal areas were relatively more affected by TCs during MCP events, and the Pearl River basin was more affected during SBW events. This study’s results could help mitigate TC-related disasters and improve water-supply management.


Sign in / Sign up

Export Citation Format

Share Document