scholarly journals Projecting and Forecasting Winter Precipitation Extremes and Meteorological Drought in California Using the North Pacific High Sea Level Pressure Anomaly

2016 ◽  
Vol 29 (13) ◽  
pp. 5009-5026 ◽  
Author(s):  
Mariza Costa-Cabral ◽  
John S. Rath ◽  
William B. Mills ◽  
Sujoy B. Roy ◽  
Peter D. Bromirski ◽  
...  

Abstract Large-scale climatic indices have been used as predictors of precipitation totals and extremes in many studies and are used operationally in weather forecasts to circumvent the difficulty in obtaining robust dynamical simulations of precipitation. The authors show that the sea level pressure North Pacific high (NPH) wintertime anomaly, a component of the Northern Oscillation index (NOI), provides a superior covariate of interannual precipitation variability in Northern California, including seasonal precipitation totals, drought, and extreme precipitation intensity, compared to traditional ENSO indices such as the Southern Oscillation index (SOI), the multivariate ENSO index (MEI), Niño-3.4, and others. Furthermore, the authors show that the NPH anomaly more closely reflects the influence of Pacific basin conditions over California in general, over groups of stations used to characterize statewide precipitation in the Sierra Nevada range, and over the southern San Francisco Bay region (NASA Ames Research Center). This paper uses the term prediction to refer to the estimation of precipitation (the predictand) from a climate covariate (the predictor), such as a climate index, or atmospheric moisture. In this sense, predictor and predictand are simultaneous in time. Statistical models employed show the effectiveness of the NPH winter anomaly as a predictor of total winter precipitation and daily precipitation extremes at the Moffett Field station. NPH projected by global climate models is also used in conjunction with atmospheric humidity [atmospheric specific humidity (HUS) at the 850-hPa level] to obtain projections of mean and extreme precipitation. The authors show that future development of accurate forecasts of NPH anomalies issued several months in advance is important for forecasting total winter precipitation and is expected to directly benefit water resource management in California. Therefore, the authors suggest that investigating the lead-time predictability of NPH anomalies is an important direction for future research.

2016 ◽  
Vol 17 (12) ◽  
pp. 3045-3061 ◽  
Author(s):  
Allison B. Marquardt Collow ◽  
Michael G. Bosilovich ◽  
Randal D. Koster

Abstract Observations indicate that over the last few decades there has been a statistically significant increase in precipitation in the northeastern United States and that this can be attributed to an increase in precipitation associated with extreme precipitation events. Here a state-of-the-art atmospheric reanalysis is used to examine such events in detail. Daily extreme precipitation events defined at the 75th and 95th percentile from gridded gauge observations are identified for a selected region within the Northeast. Atmospheric variables from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are then composited during these events to illustrate the time evolution of associated synoptic structures, with a focus on vertically integrated water vapor fluxes, sea level pressure, and 500-hPa heights. Anomalies of these fields move into the region from the northwest, with stronger anomalies present in the 95th percentile case. Although previous studies show tropical cyclones are responsible for the most intense extreme precipitation events, only 10% of the events in this study are caused by tropical cyclones. On the other hand, extreme events resulting from cutoff low pressure systems have increased. The time period of the study was divided in half to determine how the mean composite has changed over time. An arc of lower sea level pressure along the East Coast and a change in the vertical profile of equivalent potential temperature suggest a possible increase in the frequency or intensity of synoptic-scale baroclinic disturbances.


2015 ◽  
Vol 120 (1) ◽  
pp. 27-45 ◽  
Author(s):  
Ruiqiang Ding ◽  
Jianping Li ◽  
Yu-heng Tseng ◽  
Cheng Sun ◽  
Yipeng Guo

2021 ◽  
Vol 21 (10) ◽  
pp. 7499-7514
Author(s):  
Lixia Zhang ◽  
Laura J. Wilcox ◽  
Nick J. Dunstone ◽  
David J. Paynter ◽  
Shuai Hu ◽  
...  

Abstract. Air pollution is a major issue in China and one of the largest threats to public health. We investigated future changes in atmospheric circulation patterns associated with haze events in the Beijing region and the severity of haze events during these circulation conditions from 2015 to 2049 under two different aerosol scenarios: a maximum technically feasible aerosol reduction (MTFR) and a current legislation aerosol scenario (CLE). In both cases greenhouse gas emissions follow the Representative Concentration Pathway 4.5 (RCP4.5). Under RCP4.5 with CLE aerosol the frequency of circulation patterns associated with haze events increases due to a weakening of the East Asian winter monsoon via increased sea level pressure over the North Pacific. The rapid reduction in anthropogenic aerosol and precursor emissions in MTFR further increases the frequency of circulation patterns associated with haze events, due to further increases in the sea level pressure over the North Pacific and a reduction in the intensity of the Siberian high. Even with the aggressive aerosol reductions in MTFR periods of poor visibility, represented by above-normal aerosol optical depth (AOD), still occur in conjunction with haze-favorable atmospheric circulation. However, the winter mean intensity of poor visibility decreases in MTFR, so that haze events are less dangerous in this scenario by 2050 compared to CLE and relative to the current baseline. This study reveals the competing effects of aerosol emission reductions on future haze events through their direct contribution to pollutant source and their influence on the atmospheric circulation. A compound consideration of these two impacts should be taken in future policy making.


2011 ◽  
Vol 24 (4) ◽  
pp. 1170-1183 ◽  
Author(s):  
Sang-Wook Yeh ◽  
Yune-Jung Kang ◽  
Yign Noh ◽  
Arthur J. Miller

Abstract This paper examines characteristic changes in North Pacific sea surface temperature (SST) variability during the boreal winter (December–February) for two subperiods (1956–88 and 1977–2009) during which the 1976/77 and the 1988/89 climate transitions occurred. It is found that the Pacific decadal oscillation (PDO)-like SST variability plays a dominant role in the 1976/77 climate transition, while both the North Pacific Gyre Oscillation (NPGO)-like and PDO-like SST variability contribute to the 1988/89 climate transition. Furthermore, the leading mode changes from PDO-like SST variability during the period 1956–88 to NPGO-like SST variability during the period 1977–2009, indicative of an enhancement of NPGO-like SST variability since 1988. Changes in sea level pressure across the 1976/77 climate transition project strongly onto the Aleutian low pressure system. But sea level pressure changes across the 1988/89 climate transition project primarily onto the North Pacific Oscillation, which is associated with remote changes in the Arctic Oscillation over the polar region as well. This contributes to enhancing the NPGO-like SST variability after 1988. The authors also analyze the output from an ensemble of Tropical Ocean and Global Atmosphere (TOGA) experiments in which the observed SSTs are inserted only at grid points in the tropics between 20°S and 20°N. The results indicate that the changes in the North Pacific atmosphere in the 1976/77 climate transition are mostly due to the tropics, whereas those in the 1988/89 climate transition are not.


Sign in / Sign up

Export Citation Format

Share Document