scholarly journals Atmospheric Responses and Feedback to the Meridional Ocean Heat Transport in the North Pacific

2017 ◽  
Vol 30 (15) ◽  
pp. 5715-5728 ◽  
Author(s):  
Hiroaki Tatebe ◽  
Masao Kurogi ◽  
Hiroyasu Hasumi

Atmospheric responses and feedback to meridional ocean heat transport (OHT) have been investigated using a global climate model that is interactively connected with a high-resolution regional ocean model embedded in the western North Pacific. Compared with a global climate model without the regional model, the net heat supply into the Kuroshio–Oyashio Extension (KOE) region is increased as a result of the increase of the mean northward ocean heat transport (OHT) by the western boundary currents and mesoscale eddies. Resultant sea surface temperature (SST) rise sharpens the meridional SST gradient and reinforces the cross-frontal difference of the surface heat flux and thereby enhances lower-tropospheric baroclinicity. These changes cause northward deflection and strengthening of the wintertime storm track over the North Pacific, which leads to the Pacific–North American (PNA)-like pattern anticyclonic response of the mean westerly jet. The increase of the eddy northward atmospheric heat flux (AHF) associated with the enhanced storm-track activity is compensated by the decrease of the mean northward AHF. The changes of the atmospheric circulations reduce the mean northward OHT in the eastern North Pacific that compensates the increase of the mean northward OHT in the KOE region. The atmospheric responses, which have once been excited by the SST fronts in the KOE region, stabilize the trans–North Pacific OHT. The modeling results herein suggest that basinwide Bjerknes-like compensation works in air–sea coupled processes for the formation of the climatic mean state in the North Pacific.

2017 ◽  
Vol 30 (5) ◽  
pp. 1861-1880 ◽  
Author(s):  
Xiaohui Ma ◽  
Ping Chang ◽  
R. Saravanan ◽  
Raffaele Montuoro ◽  
Hisashi Nakamura ◽  
...  

Abstract Local and remote atmospheric responses to mesoscale SST anomalies associated with the oceanic front and eddies in the Kuroshio Extension region (KER) are studied using high- (27 km) and low-resolution (162 km) regional climate model simulations in the North Pacific. In the high-resolution simulations, removal of mesoscale SST anomalies in the KER leads to not only a local reduction in cyclogenesis but also a remote large-scale equivalent barotropic response with a southward shift of the downstream storm track and jet stream in the eastern North Pacific. In the low-resolution simulations, no such significant remote response is found when mesoscale SST anomalies are removed. The difference between the high- and low-resolution model simulated atmospheric responses is attributed to the effect of mesoscale SST variability on cyclogenesis through moist baroclinic instability. It is only when the model has sufficient resolution to resolve small-scale diabatic heating that the full effect of mesoscale SST forcing on the storm track can be correctly simulated.


2012 ◽  
Vol 25 (19) ◽  
pp. 6554-6566 ◽  
Author(s):  
Bolan Gan ◽  
Lixin Wu

Abstract In this study the modulation of ocean-to-atmosphere feedback over the North Pacific in early winter from global warming is investigated based on both the observations and multiple climate model simulations from a statistical perspective. It is demonstrated that the basin-scale atmospheric circulation displays an equivalent barotropic ridge in response to warm SST anomalies in the Kuroshio–Oyashio Extension (KOE) region. This warm SST–ridge response in early winter can be enhanced significantly by global warming, indicating a strengthening of air–sea coupling over the North Pacific. This enhancement is likely associated with the intensification of storm tracks and, in turn, the amplification of atmospheric transient eddy feedback in a warm climate, although the secular trend of enhanced storm-track activity over the North Pacific is suggested to be biased in reanalysis product.


2014 ◽  
Vol 27 (2) ◽  
pp. 592-606 ◽  
Author(s):  
Dimitry Smirnov ◽  
Matthew Newman ◽  
Michael A. Alexander

Abstract Air–sea interaction over the North Pacific is diagnosed using a simple, local coupled autoregressive model constructed from observed 7-day running-mean sea surface temperature (SST) and 2-m air temperature TA anomalies during the extended winter from the 1° × 1° objectively analyzed air–sea fluxes (OAFlux) dataset. Though the model is constructed from 1-week lag statistics, it successfully reproduces the observed anomaly evolution through lead times of 90 days, allowing an estimation of the relative roles of coupling and internal atmospheric and oceanic forcing upon North Pacific SSTs. It is found that east of the date line, SST variability is maintained by, but has little effect on, TA variability. However, in the Kuroshio–Oyashio confluence and extension region, about half of the SST variability is independent of TA, driven instead by SST noise forcing internal to the ocean. Including surface zonal winds in the analysis does not alter this conclusion, suggesting TA adequately represents the atmosphere. Repeating the analysis with the output of two control simulations from a fully coupled global climate model (GCM) differing only in their ocean resolution yields qualitatively similar results. However, for the simulation employing the coarse-resolution (1°) ocean model, all SST variability depends upon TA, apparently caused by a near absence of ocean-induced noise forcing. Collectively, these results imply that a strong contribution from internal oceanic forcing drives SST variability in the Kuroshio–Oyashio region, which may be used as a justification for atmospheric GCM experiments forced with SST anomalies in that region alone. This conclusion is unaffected by increasing the dimensionality of the model to allow for intrabasin interaction.


2020 ◽  
Author(s):  
David Docquier ◽  
Ramon Fuentes-Franco ◽  
Klaus Wyser ◽  
Torben Koenigk

<p>Arctic sea ice has been retreating at fast pace in the last decades, with potential impacts on the weather and climate at mid and high latitudes, as well as the biosphere and society. Sea-ice loss is driven by anthropogenic global warming, atmospheric circulation changes, climate feedbacks, and ocean heat transport. To date, no clear consensus regarding the detailed impact of ocean heat transport on Arctic sea ice exists. Previous observational and modeling studies show that the poleward Atlantic Ocean heat transport and Arctic sea-ice area and volume are generally anti-correlated, suggesting a decrease in sea-ice area and volume with larger ocean heat transport. In turn, the changing sea ice may also affect ocean heat transport, but this effect has been much less studied. Our study explores the two-way interactions between ocean heat transport and Arctic sea ice. We use the EC-Earth global climate model, coupling the atmosphere and ocean, and perform different sensitivity experiments to gain insights into these interactions. The mechanisms by which ocean heat transport and Arctic sea ice interact are analyzed, and compared to observations. This study provides a way to better constrain model projections of Arctic sea ice, based on the relationships between ocean heat transport and Arctic sea ice.</p>


2019 ◽  
Vol 32 (23) ◽  
pp. 8373-8398 ◽  
Author(s):  
Sebastian Schemm ◽  
Gwendal Rivière

Abstract This study investigates the efficiency of baroclinic eddy growth in an effort to better understand the suppression of the North Pacific storm-track intensity in winter. The efficiency of baroclinic eddy growth depends on the magnitude and orientation of the vertical tilt of the eddy geopotential isolines. The eddy efficiency is maximized if the orientation of the vertical tilt creates an eddy heat flux that aligns with the mean baroclinicity (defined as minus the temperature gradient divided by a stratification parameter) and if the magnitude of the vertical tilt is neither too strong nor too weak. The eddy efficiency is, in contrast to most other eddy measures, independent of the eddy amplitude and thus useful for improving our mechanistic understanding of the effective eddy growth. During the midwinter suppression, the eddy efficiency is reduced north of 40°N over a region upstream of the main storm track, and baroclinic growth is reduced despite a maximum in baroclinicity. Eulerian diagnostics and feature tracking suggest that the reduction in eddy efficiency is due to a stronger poleward tilt with height of eddies entering the Pacific through the northern seeding branch, which results in a more eastward-oriented eddy heat flux and a reduced alignment with the baroclinicity. The stronger poleward tilt with height is constrained by the eddy propagation direction, which is more equatorward when the subtropical jet moves equatorward in winter. In addition, the westward tilt with height is too strong. South of 40°N, the eddy efficiency increases during midwinter but in a region far away from the main storm track.


2009 ◽  
Vol 22 (12) ◽  
pp. 3177-3192 ◽  
Author(s):  
Terrence M. Joyce ◽  
Young-Oh Kwon ◽  
Lisan Yu

Abstract Coherent, large-scale shifts in the paths of the Gulf Stream (GS) and the Kuroshio Extension (KE) occur on interannual to decadal time scales. Attention has usually been drawn to causes for these shifts in the overlying atmosphere, with some built-in delay of up to a few years resulting from propagation of wind-forced variability within the ocean. However, these shifts in the latitudes of separated western boundary currents can cause substantial changes in SST, which may influence the synoptic atmospheric variability with little or no time delay. Various measures of wintertime atmospheric variability in the synoptic band (2–8 days) are examined using a relatively new dataset for air–sea exchange [Objectively Analyzed Air–Sea Fluxes (OAFlux)] and subsurface temperature indices of the Gulf Stream and Kuroshio path that are insulated from direct air–sea exchange, and therefore are preferable to SST. Significant changes are found in the atmospheric variability following changes in the paths of these currents, sometimes in a local fashion such as meridional shifts in measures of local storm tracks, and sometimes in nonlocal, broad regions coincident with and downstream of the oceanic forcing. Differences between the North Pacific (KE) and North Atlantic (GS) may be partly related to the more zonal orientation of the KE and the stronger SST signals of the GS, but could also be due to differences in mean storm-track characteristics over the North Pacific and North Atlantic.


2020 ◽  
Author(s):  
Yuan-Bing Zhao

<p>Using a recently developed methodology, namely, the multiscale window transform (MWT), and the MWT-based theory of canonical transfer and localized multiscale energetics analysis, we investigate in an eddy-following way the nonlinear eddy-background flow interaction in the North Pacific storm track, based on the ERA40 reanalysis data from ECWMF. It is found that more than 50% of the storms occur on the northern flank of the jet stream, about 40% are around the jet center, and very few (less than 5%) happen on the southern flank. For storms near or to the north of the jet center, their interaction with the background flow is asymmetric in latitude. In higher latitudes, strong downscale canonical available potential energy transfer happens, especially in the middle troposphere, which reduces the background baroclinicity and decelerates the jet; in lower latitudes, upscale canonical kinetic energy transfer intensifies at the jet center, accelerating the jet and enhancing the middle-level baroclinicity. The resultant effect is that the jet strengthens but narrows, leading to an anomalous dipolar pattern in the fields of background wind and baroclinicity. For the storms on the southern side of the jet, the baroclinic canonical transfer is rather weak. On average, the local interaction begins from about 3 days before a storm arrives at the site of observation, achieves its maximum as the storm arrives, and then weakens.</p>


Sign in / Sign up

Export Citation Format

Share Document