scholarly journals Coupled High-Latitude Climate Feedbacks and Their Impact on Atmospheric Heat Transport

2017 ◽  
Vol 30 (1) ◽  
pp. 189-201 ◽  
Author(s):  
Nicole Feldl ◽  
Simona Bordoni ◽  
Timothy M. Merlis

The response of atmospheric heat transport to anthropogenic warming is determined by the anomalous meridional energy gradient. Feedback analysis offers a characterization of that gradient and hence reveals how uncertainty in physical processes may translate into uncertainty in the circulation response. However, individual feedbacks do not act in isolation. Anomalies associated with one feedback may be compensated by another, as is the case for the positive water vapor and negative lapse rate feedbacks in the tropics. Here a set of idealized experiments are performed in an aquaplanet model to evaluate the coupling between the surface albedo feedback and other feedbacks, including the impact on atmospheric heat transport. In the tropics, the dynamical response manifests as changes in the intensity and structure of the overturning Hadley circulation. Only half of the range of Hadley cell weakening exhibited in these experiments is found to be attributable to imposed, systematic variations in the surface albedo feedback. Changes in extratropical clouds that accompany the albedo changes explain the remaining spread. The feedback-driven circulation changes are compensated by eddy energy flux changes, which reduce the overall spread among experiments. These findings have implications for the efficiency with which the climate system, including tropical circulation and the hydrological cycle, adjusts to high-latitude feedbacks over climate states that range from perennial or seasonal ice to ice-free conditions in the Arctic.

2017 ◽  
Vol 8 (2) ◽  
pp. 323-336 ◽  
Author(s):  
Marc Salzmann

Abstract. Previous studies have attributed an overall weaker (or slower) polar amplification in Antarctica compared to the Arctic to a weaker Antarctic surface albedo feedback and also to more efficient ocean heat uptake in the Southern Ocean in combination with Antarctic ozone depletion. Here, the role of the Antarctic surface height for meridional heat transport and local radiative feedbacks, including the surface albedo feedback, was investigated based on CO2-doubling experiments in a low-resolution coupled climate model. When Antarctica was assumed to be flat, the north–south asymmetry of the zonal mean top of the atmosphere radiation budget was notably reduced. Doubling CO2 in a flat Antarctica (flat AA) model setup led to a stronger increase in southern hemispheric poleward atmospheric and oceanic heat transport compared to the base model setup. Based on partial radiative perturbation (PRP) computations, it was shown that local radiative feedbacks and an increase in the CO2 forcing in the deeper atmospheric column also contributed to stronger Antarctic warming in the flat AA model setup, and the roles of the individual radiative feedbacks are discussed in some detail. A considerable fraction (between 24 and 80 % for three consecutive 25-year time slices starting in year 51 and ending in year 126 after CO2 doubling) of the polar amplification asymmetry was explained by the difference in surface height, but the fraction was subject to transient changes and might to some extent also depend on model uncertainties. In order to arrive at a more reliable estimate of the role of land height for the observed polar amplification asymmetry, additional studies based on ensemble runs from higher-resolution models and an improved model setup with a more realistic gradual increase in the CO2 concentration are required.


2017 ◽  
Author(s):  
Marc Salzmann

Abstract. Previous studies have attributed an overall weaker (or slower) polar amplification in Antarctica compared to the Arctic to a weaker antarctic surface albedo feedback and also to more efficient ocean heat uptake in the Southern Ocean in combination with antarctic ozone depletion. Here, the role of the antarctic surface height for meridional heat transport and local radiative feedbacks including the surface albedo feedback was investigated based on CO2 doubling experiments in a low resolution coupled climate model. If Antarctica was assumed to be flat, the north-south asymmetry of the zonal mean top of the atmosphere radiation budget was significantly reduced. Doubling CO2 in a flat Antarctica ("flat AA") model setup led to a stronger increase of southern hemispheric poleward atmospheric and oceanic heat transport compared to the base model setup. Based on partial radiative perturbation (PRP) computations it was shown that local radiative feedbacks and an increase of the CO2 forcing in the deeper atmospheric column also contributed to stronger antarctic warming in the flat AA model setup, and the roles of the individual radiative feedbacks are discussed in some detail. A significant fraction (between 24 and 80 % for three consecutive 25-year time slices starting in year 51 and ending in year 126 after CO2 doubling) of the polar amplification asymmetry was explained by the difference in surface height, but the fraction was subject to transient changes, and might to some extent also depend on model uncertainties.


2021 ◽  
Author(s):  
Olivia Linke ◽  
Johannes Quaas

<p>The strong warming trend in the Arctic is mostly confined at the surface, and particularly evident during the cold season. The lapse rate feedback (LRF) stands out as one of the dominant causes of the Arctic amplification (besides the surface albedo feedback) given its differing response between high and lower latitudes. The LRF is the deviation from the uniform temperature change throughout the troposphere, and can thereby be quantified as the difference of tropospheric warming and surface warming. In the Arctic, it enforces a positive radiative feedback as the bottom-heavy warming is increasingly muted at higher altitudes, which has been suggested to relate to the lack of vertical mixing. In fact, climate model studies have recently identified more negative lapse rates for models with stronger inversions over large parts of the Arctic ocean, and snow-free land during winter.</p><p>Here we quantify individual components of the atmospheric energy balance to better understand the determination of the temperature lapse rate in the Arctic, which does not only interact with the surface albedo feedback, but also changes in atmospheric transport. A decomposition of the atmospheric energy budget is derived from the 6th phase of the Coupled Model Intercomparison Project (CMIP6), and concerns the radiation budgets, the transport divergence of heat and moisture, and the surface turbulent heat fluxes. Alterations of the budget components are obtained through pairs of model scenarios to simulate the impact of increasing atmospheric CO2 levels in an idealized setup.</p><p>The most notable features are the strongly opposing winter changes of the surface heat fluxes over regions of sea ice retreat and open Arctic ocean, and the interplay with the compensating energy transport divergence which can be linked to the near-surface air moist static energy in an energetic-diffusive perspective. We further aim to relate the changes of individual energetics to the temperature lapse rate in the Arctic to better understand and quantify the factors contributing to its evolution.</p>


2017 ◽  
Vol 49 (9-10) ◽  
pp. 3457-3472 ◽  
Author(s):  
Masakazu Yoshimori ◽  
Ayako Abe-Ouchi ◽  
Alexandre Laîné

2021 ◽  
Vol 9 ◽  
Author(s):  
L. C. Hahn ◽  
K. C. Armour ◽  
M. D. Zelinka ◽  
C. M. Bitz ◽  
A. Donohoe

As a step towards understanding the fundamental drivers of polar climate change, we evaluate contributions to polar warming and its seasonal and hemispheric asymmetries in Coupled Model Intercomparison Project phase 6 (CMIP6) as compared with CMIP5. CMIP6 models broadly capture the observed pattern of surface- and winter-dominated Arctic warming that has outpaced both tropical and Antarctic warming in recent decades. For both CMIP5 and CMIP6, CO2 quadrupling experiments reveal that the lapse-rate and surface albedo feedbacks contribute most to stronger warming in the Arctic than the tropics or Antarctic. The relative strength of the polar surface albedo feedback in comparison to the lapse-rate feedback is sensitive to the choice of radiative kernel, and the albedo feedback contributes most to intermodel spread in polar warming at both poles. By separately calculating moist and dry atmospheric heat transport, we show that increased poleward moisture transport is another important driver of Arctic amplification and the largest contributor to projected Antarctic warming. Seasonal ocean heat storage and winter-amplified temperature feedbacks contribute most to the winter peak in warming in the Arctic and a weaker winter peak in the Antarctic. In comparison with CMIP5, stronger polar warming in CMIP6 results from a larger surface albedo feedback at both poles, combined with less-negative cloud feedbacks in the Arctic and increased poleward moisture transport in the Antarctic. However, normalizing by the global-mean surface warming yields a similar degree of Arctic amplification and only slightly increased Antarctic amplification in CMIP6 compared to CMIP5.


2021 ◽  
Vol 34 (9) ◽  
pp. 3543-3554
Author(s):  
Tyler Cox ◽  
Kyle C. Armour ◽  
Gerard H. Roe ◽  
Aaron Donohoe ◽  
Dargan M. W. Frierson

AbstractAtmospheric heat transport is an important piece of our climate system, yet we lack a complete theory for its magnitude or changes. Atmospheric dynamics and radiation play different roles in controlling the total atmospheric heat transport (AHT) and its partitioning into components associated with eddies and mean meridional circulations. This work focuses on two specific controls: a radiative one, namely atmospheric radiative temperature tendencies, and a dynamic one, the planetary rotation rate. We use an idealized gray radiation model to employ a novel framework to lock the radiative temperature tendency and total AHT to climatological values, even while the rotation rate is varied. This setup allows for a systematic study of the effects of radiative tendency and rotation rate on AHT. We find that rotation rate controls the latitudinal extent of the Hadley cell and the heat transport efficiency of eddies. Both the rotation rate and radiative tendency influence the strength of the Hadley cell and the strength of equator–pole energy differences that are important for AHT by eddies. These two controls do not always operate independently and can reinforce or dampen each other. In addition, we examine how individual AHT components, which vary with latitude, sum to a total AHT that varies smoothly with latitude. At slow rotation rates the mean meridional circulation is most important in ensuring total AHT varies smoothly with latitude, while eddies are most important at rotation rates similar to, and faster than, those of Earth.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Nicole Feldl ◽  
Stephen Po-Chedley ◽  
Hansi K. A. Singh ◽  
Stephanie Hay ◽  
Paul J. Kushner

Abstract Arctic amplification of anthropogenic climate change is widely attributed to the sea-ice albedo feedback, with its attendant increase in absorbed solar radiation, and to the effect of the vertical structure of atmospheric warming on Earth’s outgoing longwave radiation. The latter lapse rate feedback is subject, at high latitudes, to a myriad of local and remote influences whose relative contributions remain unquantified. The distinct controls on the high-latitude lapse rate feedback are here partitioned into “upper” and “lower” contributions originating above and below a characteristic climatological isentropic surface that separates the high-latitude lower troposphere from the rest of the atmosphere. This decomposition clarifies how the positive high-latitude lapse rate feedback over polar oceans arises primarily as an atmospheric response to local sea ice loss and is reduced in subpolar latitudes by an increase in poleward atmospheric energy transport. The separation of the locally driven component of the high-latitude lapse rate feedback further reveals how it and the sea-ice albedo feedback together dominate Arctic amplification as a coupled mechanism operating across the seasonal cycle.


2017 ◽  
Vol 30 (1) ◽  
pp. 393-410 ◽  
Author(s):  
Olivier Andry ◽  
Richard Bintanja ◽  
Wilco Hazeleger

The Arctic is warming 2 to 3 times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (e.g., 2007 and 2012). Considering that the Arctic Ocean is mainly ice covered and that the albedo of sea ice is very high compared to that of open water, any change in sea ice cover will have a strong impact on the climate response through the radiative surface albedo feedback. Since sea ice area is projected to shrink considerably, this feedback will likely vary considerably in time. Feedbacks are usually evaluated as being constant in time, even though feedbacks and climate sensitivity depend on the climate state. Here the authors assess and quantify these temporal changes in the strength of the surface albedo feedback in response to global warming. Analyses unequivocally demonstrate that the strength of the surface albedo feedback exhibits considerable temporal variations. Specifically, the strength of the surface albedo feedback in the Arctic, evaluated for simulations of the future climate (CMIP5 RCP8.5) using a kernel method, shows a distinct peak around the year 2100. This maximum is found to be linked to increased seasonality in sea ice cover when sea ice recedes, in which sea ice retreat during spring turns out to be the dominant factor affecting the strength of the annual surface albedo feedback in the Arctic. Hence, changes in sea ice seasonality and the associated fluctuations in surface albedo feedback strength will exert a time-varying effect on Arctic amplification during the projected warming over the next century.


Sign in / Sign up

Export Citation Format

Share Document