scholarly journals Impact of Two Types of El Niño on Tropical Cyclones over the Western North Pacific: Sensitivity to Location and Intensity of Pacific Warming

2018 ◽  
Vol 31 (5) ◽  
pp. 1725-1742 ◽  
Author(s):  
Liang Wu ◽  
Hongjie Zhang ◽  
Jau-Ming Chen ◽  
Tao Feng

The present study investigates the impact of various central Pacific (CP) and eastern Pacific (EP) warming on tropical cyclones (TCs) over the western North Pacific (WNP) for the period 1948–2015 based on observational and reanalysis data. Four distinctly different forms of tropical Pacific warming are identified to examine different impacts of locations and intensity of tropical Pacific warming on the WNP TCs. It is shown that WNP TC activity related to ENSO shows stronger sensitivity to the intensity of CP SST warming. The locations of TC genesis in an extreme EP El Niño featuring concurrent strong CP and EP warming (CEPW) display a notable southeastward shift that is generally similar to the CP El Niño featuring CP warming alone (CPW). These influences are clearly different from the effects of moderate EP El Niño associated with EP warming alone (EPW). The above influences of Pacific warming on TCs possibly occur via atmospheric circulation variability. Anomalous convection associated with CP SST warming drives anomalous low-level westerlies away from the equator as a result of a Gill-type Rossby wave response, leading to an enhanced broad-zone, eastward-extending monsoon trough (MT). An anomalous Walker circulation in response to EP SST warming drives an increase in anomalous equatorial westerlies over the WNP, leading to a narrow-zone, slightly equatorward shift of the eastward-extending MT. These changes in the MT coincide with a shift in large-scale environments and synoptic-scale perturbations, which favor TC genesis and development. In addition, during weaker EP SST warming (WEPW) with similar intensity to CPW, local SST forcing exhibits primary control on WNP TCs and atmospheric circulation.

2006 ◽  
Vol 6 ◽  
pp. 139-148 ◽  
Author(s):  
N. K. W. Cheung

Abstract. The abruptly recurving tropical cyclones over the Western North Pacific Ocean Basin during El Niño and La Niña events are studied. Temporal and spatial variations of these anomalous tracks under different phases of ENSO are shown. The anomalies of the pressure field in relation to ENSO circulation for the occurrence of the abruptly recurving cyclone tracks are investigated using fuzzy method. These are supplemented by wind field analyses. It is found that the occurrence of recurving-left (RL) and recurving-right (RR) tropical cyclones under the modification of the steering currents, including the re-adjustment of the westerly trough, the expansion or contraction of the sub-tropical high pressure, the intensifying easterly flow and the strengthening of the cross-equatorial flow, can be in El Niño or La Niña events. Evidently, there is a higher chance of occurrence of anomalous tropical cyclone trajectories in El Niño rather than La Niña events, but there is not any pronounced spatial pattern of anomalous tropical cyclone tracks. By analyzing the pressure-field, it is seen RL (RR) tropical cyclones tend to occur when the subtropical high pressure is weak (strong) in El Niño and La Niña events. More importantly, how the internal force of tropical cyclones changed by the steering current, which relies upon the relative location of tropical cyclones to the re-adjustment of the weather systems, shows when and where RL and RR tropical cyclones occur in El Niño and La Niña events.


2020 ◽  
Vol 33 (8) ◽  
pp. 3271-3288
Author(s):  
Juan Feng ◽  
Wen Chen ◽  
Xiaocong Wang

AbstractThe El Niño Modoki–induced anomalous western North Pacific anticyclone (WNPAC) undergoes an interesting reintensification process in the El Niño Modoki decaying summer, the period when El Niño Modoki decays but warm sea surface temperature (SST) anomalies over the tropical North Atlantic (TNA) and cold SST anomalies over the central-eastern Pacific (CEP) dominate. In this study, the region (TNA or CEP) in which the SST anomalies exert a relatively important influence on reintensification of the WNPAC is investigated. Observational analysis demonstrates that when only anomalous CEP SST cooling occurs, the WNPAC experiences a weak reintensification. In contrast, when only anomalous TNA SST warming emerges, the WNPAC experiences a remarkable reintensification. Numerical simulation analysis demonstrates that even though the same magnitude of CEP SST cooling and TNA warming is respectively set to force the atmospheric general circulation model, the response of the WNPAC is still much stronger in the TNA warming experiment than in the CEP cooling experiment. Further analysis demonstrates that this difference is caused by the distinct location of the effective tropical forcing between the CEP SST cooling and TNA SST warming for producing a WNPAC. The CEP cooling-induced effective anomalous diabatic cooling is located in the central Pacific, by which the forced anticyclone becomes gradually weak from the central Pacific to the western North Pacific. Thus, a weak WNPAC is produced. In contrast, as the TNA SST warming–induced effective anomalous diabatic cooling is just located in the western North Pacific via a Kelvin wave–induced Ekman divergence process, the forced anticyclone is significant and powerful in the western North Pacific.


2020 ◽  
Vol 15 (2) ◽  
pp. 024014
Author(s):  
Shifei Tu ◽  
Jianjun Xu ◽  
Feng Xu ◽  
Mei Liang ◽  
Qianqian Ji ◽  
...  

2009 ◽  
Vol 22 (20) ◽  
pp. 5495-5510 ◽  
Author(s):  
Hisayuki Kubota ◽  
Bin Wang

Abstract The authors investigate the effects of tropical cyclones (TCs) on seasonal and interannual rainfall variability over the western North Pacific (WNP) by using rainfall data at 22 stations. The TC-induced rainfall at each station is estimated by using station data when a TC is located within the influential radius (1000 km) from the station. The spatial–temporal variability of the proportion of TC rainfall is examined primarily along the east–west island chain near 10°N (between 7° and 13°N) and the north–south island chain near 125°E (between 120° and 130°E). Along 10°N the seasonality of total rainfall is mainly determined by non-TC rainfall that is influenced by the WNP monsoon trough. The proportion of the TC rain is relatively low. During the high TC season from July to December, TC rainfall accounts for 30% of the total rainfall in Guam, 15%–23% in Koror and Yap, and less than 10% at other stations. In contrast, along 125°E where the WNP subtropical high is located, the TC rainfall accounts for 50%–60% of the total rainfall between 18° and 26°N during the peak TC season from July to October. In Hualien of Taiwan, TC rainfall exceeds 60% of the total rainfall. The interannual variability of the TC rainfall and total rainfall is primarily modulated by El Niño–Southern Oscillation (ENSO). Along 10°N, the ratio of TC rainfall versus total rainfall is higher than the climatology during developing and mature phases of El Niño (from March to the following January), whereas the ratio is below the climatology during the decaying phase of El Niño. The opposite is true for La Niña, except that the impact of La Niña is shorter in duration. Furthermore, in summer of El Niño developing years, the total seasonal rainfall increases primarily because of the increase of TC rainfall. In the ensuing autumn, an anticyclonic anomaly develops over the Philippine Sea and TC rainfall shifts eastward; as a result, the total rainfall over the Philippines and Taiwan decreases. The total rainfall to the east of 140°E, however, changes little, because the westward passage of TCs enhances TC rainfall, which offsets the decrease of non-TC rainfall. Along the meridional island chain between 120° and 130°E, the total rainfall anomaly is affected by ENSO starting from the autumn to the following spring, and the variation in TC rainfall dominates the total rainfall variation only in autumn (August–November) of ENSO years. The results from this study suggest that in the tropical WNP and subtropical East Asian monsoon regions (east of 120°E), the seasonal and interannual variations of rainfall are controlled by changes in nonlocal circulations. These changes outside the monsoon domain may substantially affect summer monsoon rainfall by changing TC genesis and tracks.


2016 ◽  
Vol 29 (18) ◽  
pp. 6401-6423 ◽  
Author(s):  
Rongqing Han ◽  
Hui Wang ◽  
Zeng-Zhen Hu ◽  
Arun Kumar ◽  
Weijing Li ◽  
...  

Abstract An assessment of simulations of the interannual variability of tropical cyclones (TCs) over the western North Pacific (WNP) and its association with El Niño–Southern Oscillation (ENSO), as well as a subsequent diagnosis for possible causes of model biases generated from simulated large-scale climate conditions, are documented in the paper. The model experiments are carried out by the Hurricane Work Group under the U.S. Climate Variability and Predictability Research Program (CLIVAR) using five global climate models (GCMs) with a total of 16 ensemble members forced by the observed sea surface temperature and spanning the 28-yr period from 1982 to 2009. The results show GISS and GFDL model ensemble means best simulate the interannual variability of TCs, and the multimodel ensemble mean (MME) follows. Also, the MME has the closest climate mean annual number of WNP TCs and the smallest root-mean-square error to the observation. Most GCMs can simulate the interannual variability of WNP TCs well, with stronger TC activities during two types of El Niño—namely, eastern Pacific (EP) and central Pacific (CP) El Niño—and weaker activity during La Niña. However, none of the models capture the differences in TC activity between EP and CP El Niño as are shown in observations. The inability of models to distinguish the differences in TC activities between the two types of El Niño events may be due to the bias of the models in response to the shift of tropical heating associated with CP El Niño.


2005 ◽  
Vol 18 (15) ◽  
pp. 2996-3006 ◽  
Author(s):  
Suzana J. Camargo ◽  
Adam H. Sobel

Abstract The influence of the El Niño–Southern Oscillation (ENSO) on tropical cyclone intensity in the western North Pacific basin is examined. Accumulated cyclone energy (ACE), constructed from the best-track dataset for the region for the period 1950–2002, and other related variables are analyzed. ACE is positively correlated with ENSO indices. This and other statistics of the interannually varying tropical cyclone distribution are used to show that there is a tendency in El Niño years toward tropical cyclones that are both more intense and longer-lived than in La Niña years. ACE leads ENSO indices: during the peak season (northern summer and fall), ACE is correlated approximately as strongly with ENSO indices up to six months later (northern winter), as well as simultaneously. It appears that not all of this lead–lag relationship is easily explained by the autocorrelation of the ENSO indices, though much of it is. Interannual variations in the annual mean lifetime, intensity, and number of tropical cyclones all contribute to the ENSO signal in ACE, though the lifetime effect appears to be the most important of the three.


2020 ◽  
Vol 33 (3) ◽  
pp. 825-846
Author(s):  
Wei Tan ◽  
Zexun Wei ◽  
Qiang Liu ◽  
Qingjun Fu ◽  
Mengyan Chen ◽  
...  

ABSTRACTThis study focuses on different evolutions of the low-level atmospheric circulations between eastern Pacific (EP) El Niño and central Pacific-II (CP-II) El Niño. The western North Pacific anomalous anticyclone (WNPAC) originates from the northern South China Sea for EP El Niño, and moves to the western North Pacific (WNP) afterward. Compared with EP El Niño, the origin of the WNPAC is farther west during CP-II El Niño, with the center over the Indochina Peninsula. Moreover, the WNPAC shows a weaker eastward shift. Such discrepancies are attributed to different evolutions of the cyclonic response over the WNP, which can suppress the convection in the western flank of the anomalous cyclone. The eastward retreat of the anomalous cyclone is significant for EP El Niño, but less evident for CP-II El Niño. These discrepancies are related to zonal evolutions of the increased precipitation over the equatorial Pacific. Following the southward migration of the intertropical convergence zone (ITCZ), the deep-convection region extends eastward along the equator, reinforcing the atmospheric response to the eastern Pacific warming in EP El Niño. For CP-II El Niño, the atmospheric response is insignificant over the eastern Pacific without warming. Moreover, the meridional migration of the ITCZ can modulate zonal variations of the easterly trade wind and specific humidity as well. Due to the combined effects of the climatological background and atmospheric anomalies, the specific humidity–induced and wind-induced moist enthalpy advection contribute to different shifts of the precipitation center.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xin Lin ◽  
Lan Wang ◽  
Jianyun Gao ◽  
Xiaoxiao Chen ◽  
Wei Zhang

A daily East Asia–Pacific teleconnection (EAP) index was constructed to investigate the impact of the intraseasonal variability (ISV) of this index on the genesis of multiple tropical cyclones (MTC) in boreal summer over the western North Pacific (WNP). The result indicates that the EAP index has dominant intraseasonal periods of 10–20 days, 20–40 days and 50–70 days, respectively. The ISV of the EAP during 1979–2019 can be classified into three types, a single-period-domination type (37%), a multiple period coexistence type (24%) and a transition type (39%). It is found that during El Niño (La Niña) summers, the ISV of the EAP is dominated by a higher-frequency (lower-frequency) oscillation with a period of around 20–30 (50–70) days. The distinctive ISV characteristics during the different ENSO years were accompanied with different dynamic and thermodynamic background conditions over the WNP and the South China Sea, which modulated the frequency and location of MTC genesis. By examining the relative contributions of individual environmental variables of the Genesis Potential Index, we found that the low-level absolute vorticity and mid-level relative humidity are two important environmental factors modulating MTC genesis. However, the relative role of these variables tends to change with the EAP ISV phase. The environmental condition over the SCS appears less influenced by ENSO. A more southern location of MTC genesis during El Niño is attributed to the change of the environmental humidity.


2010 ◽  
Vol 23 (18) ◽  
pp. 4807-4822 ◽  
Author(s):  
Bo Wu ◽  
Tim Li ◽  
Tianjun Zhou

Abstract The asymmetry of the western North Pacific (WNP) low-level atmospheric circulation anomalies between the El Niño and La Niña mature winter is examined. An anomalous WNP cyclone (WNPC) center during La Niña tends to shift westward relative to an anomalous WNP anticyclone (WNPAC) center during El Niño. Two factors may contribute to this asymmetric response. The first factor is the longitudinal shifting of El Niño and La Niña anomalous heating. The composite negative precipitation anomaly center during La Niña is located farther to the west of the composite positive precipitation anomaly center during El Niño. The westward shift of the heating may further push the WNPC westward relative to the position of the WNPAC. The second factor is the amplitude asymmetry of sea surface temperature anomalies (SSTAs) in the WNP, namely, the amplitude of local cold SSTA during El Niño is greater than that of warm SSTA during La Niña. The asymmetry of SSTA is originated from the asymmetric SSTA tendencies during the ENSO developing summer. Although both precipitation and surface wind anomalies are approximately symmetric, the surface latent heat flux anomalies are highly asymmetric over the key WNP region, where the climate mean zonal wind speed is small. Both the anomalous westerly during El Niño and the anomalous easterly during La Niña in the region lead to an enhanced surface evaporation, strengthening (weakening) the enhancement of the cold (warm) SSTA in situ during El Niño (La Niña). The asymmetry of the SSTA in the WNP is further amplified due to anomalous wind differences between El Niño and La Niña in their mature winter. Atmospheric general circulation model experiments demonstrate that both factors contribute to the asymmetry between the WNPAC and WNPC. The asymmetric circulation in the WNP contributes to the asymmetry of temporal evolutions between El Niño and La Niña.


2015 ◽  
Vol 28 (9) ◽  
pp. 3846-3856 ◽  
Author(s):  
Hye-Mi Kim ◽  
Michael A. Alexander

Abstract The vertically integrated water vapor transport (IVT) over the Pacific–North American sector during three phases of ENSO in boreal winter (December–February) is investigated using IVT values calculated from the Climate Forecast System Reanalysis (CFSR) during 1979–2010. The shift of the location and sign of sea surface temperature (SST) anomalies in the tropical Pacific Ocean leads to different atmospheric responses and thereby changes the seasonal mean moisture transport into North America. During eastern Pacific El Niño (EPEN) events, large positive IVT anomalies extend northeastward from the subtropical Pacific into the northwestern United States following the anomalous cyclonic flow around a deeper Aleutian low, while a southward shift of the cyclonic circulation during central Pacific El Niño (CPEN) events induces the transport of moisture into the southwestern United States. In addition, moisture from the eastern tropical Pacific is transported from the deep tropical eastern Pacific into Mexico and the southwestern United States during CPEN. During La Niña (NINA), the seasonal mean IVT anomaly is opposite to that of two El Niño phases. Analyses of 6-hourly IVT anomalies indicate that there is strong moisture transport from the North Pacific into the northwestern and southwestern United States during EPEN and CPEN, respectively. The IVT is maximized on the southeastern side of a low located over the eastern North Pacific, where the low is weaker but located farther south and closer to shore during CPEN than during EPEN. Moisture enters the southwestern United States from the eastern tropical Pacific during NINA via anticyclonic circulation associated with a ridge over the southern United States.


Sign in / Sign up

Export Citation Format

Share Document