Initialization and Potential Predictability of Soil Moisture in the Canadian Seasonal to Interannual Prediction System

2018 ◽  
Vol 31 (13) ◽  
pp. 5205-5224 ◽  
Author(s):  
Reinel Sospedra-Alfonso ◽  
William J. Merryfield

The initialization and potential predictability of soil moisture in CanCM4 hindcasts during 1981–2010 is assessed. CanCM4 is one of the two global climate models employed by the Canadian Seasonal to Interannual Prediction System (CanSIPS) providing operational multiseasonal forecasts for Environment and Climate Change Canada (ECCC). Soil moisture forecast initialization in CanSIPS is determined by the response of the land component to forcing from data-constrained model atmospheric fields. We evaluate hindcast initial conditions for soil moisture and its atmospheric forcings against observation-based datasets. Although model values of soil moisture variability compare relatively well with a blend of two reanalysis products, there is significant disagreement in the tropics and arid regions linked to biases in precipitation, as well as in snow-covered regions, likely the result of biases in the timing of snow onset and melt. The temporal variance of initial soil moisture anomalies is typically larger in regions of considerable precipitation variability and in cold continental areas of shallow soil depth. Appreciable variance of initial conditions, combined with persistence of the initial anomalies and the model’s ability to represent future climate variations, lead to potentially predictable soil moisture variance exceeding 60% of the total variance for up to 3–4 months in the tropics and 6–7 months in the mid- to high latitudes during hemispheric winter. Potential predictability at longer leads is primarily found in the tropics and extratropical areas of ENSO-teleconnected influences. We use lagged partial correlations to show that ENSO-teleconnected precipitation in CanCM4 is a likely source of potential predictability of soil moisture up to 1-yr lead in CanSIPS hindcasts.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2006 ◽  
Vol 63 (11) ◽  
pp. 2813-2830 ◽  
Author(s):  
Roger Marchand ◽  
Nathaniel Beagley ◽  
Sandra E. Thompson ◽  
Thomas P. Ackerman ◽  
David M. Schultz

Abstract A classification scheme is created to map the synoptic-scale (large scale) atmospheric state to distributions of local-scale cloud properties. This mapping is accomplished by a neural network that classifies 17 months of synoptic-scale initial conditions from the rapid update cycle forecast model into 25 different states. The corresponding data from a vertically pointing millimeter-wavelength cloud radar (from the Atmospheric Radiation Measurement Program Southern Great Plains site at Lamont, Oklahoma) are sorted into these 25 states, producing vertical profiles of cloud occurrence. The temporal stability and distinctiveness of these 25 profiles are analyzed using a bootstrap resampling technique. A stable-state-based mapping from synoptic-scale model fields to local-scale cloud properties could be useful in three ways. First, such a mapping may improve the understanding of differences in cloud properties between output from global climate models and observations by providing a physical context. Second, this mapping could be used to identify the cause of errors in the modeled distribution of clouds—whether the cause is a difference in state occurrence (the type of synoptic activity) or the misrepresentation of clouds for a particular state. Third, robust mappings could form the basis of a new statistical cloud parameterization.


2015 ◽  
Vol 28 (14) ◽  
pp. 5583-5600 ◽  
Author(s):  
Jacob Scheff ◽  
Dargan M. W. Frierson

Abstract The aridity of a terrestrial climate is often quantified using the dimensionless ratio of annual precipitation (P) to annual potential evapotranspiration (PET). In this study, the climatological patterns and greenhouse warming responses of terrestrial P, Penman–Monteith PET, and are compared among 16 modern global climate models. The large-scale climatological values and implied biome types often disagree widely among models, with large systematic differences from observational estimates. In addition, the PET climatologies often differ by several tens of percent when computed using monthly versus 3-hourly inputs. With greenhouse warming, land P does not systematically increase or decrease, except at high latitudes. Therefore, because of moderate, ubiquitous PET increases, decreases (drying) are much more widespread than increases (wetting) in the tropics, subtropics, and midlatitudes in most models, confirming and expanding on earlier findings. The PET increases are also somewhat sensitive to the time resolution of the inputs, although not as systematically as for the PET climatologies. The changes in the balance between P and PET are also quantified using an alternative aridity index, the ratio , which has a one-to-one but nonlinear correspondence with . It is argued that the magnitudes of changes are more uniformly relevant than the magnitudes of changes, which tend to be much higher in wetter regions. The ratio and its changes are also found to be excellent statistical predictors of the land surface evaporative fraction and its changes.


2018 ◽  
Author(s):  
Martha M. Vogel ◽  
Jakob Zscheischler ◽  
Sonia I. Seneviratne

Abstract. The frequency and intensity of climate extremes is expected to increase in many regions due to anthropogenic climate change. In Central Europe extreme temperatures are projected to change more strongly than global mean temperatures and soil moisture-temperature feedbacks significantly contribute to this regional amplification. Because of their strong societal, ecological and economic impacts, robust projections of temperature extremes are needed. Unfortunately, in current model projections, temperature extremes in Central Europe are prone to large uncertainties. In order to understand and potentially reduce uncertainties of extreme temperatures projections in Europe, we analyze global climate models from the CMIP5 ensemble for the business-as-usual high-emission scenario (RCP8.5). We find a divergent behavior in long-term projections of summer precipitation until the end of the 21st century, resulting in a trimodal distribution of precipitation (wet, dry and very dry). All model groups show distinct characteristics for summer latent heat flux, top soil moisture, and temperatures on the hottest day of the year (TXx), whereas for net radiation and large-scale circulation no clear trimodal behavior is detectable. This suggests that different land-atmosphere coupling strengths may be able to explain the uncertainties in temperature extremes. Constraining the full model ensemble with observed present-day correlations between summer precipitation and TXx excludes most of the very dry and dry models. In particular, the very dry models tend to overestimate the negative coupling between precipitation and TXx, resulting in a too strong warming. This is particularly relevant for global warming levels above 2 °C. The analysis allows for the first time to substantially reduce uncertainties in the projected changes of TXx in global climate models. Our results suggest that long-term temperature changes in TXx in Central Europe are about 20 % lower than projected by the multi-model median of the full ensemble. In addition, mean summer precipitation is found to be more likely to stay close to present-day levels. These results are highly relevant for improving estimates of regional climate-change impacts including heat stress, water supply and crop failure for Central Europe.


2020 ◽  
Vol 33 (14) ◽  
pp. 5885-5903 ◽  
Author(s):  
Elinor R. Martin ◽  
Cameron R. Homeyer ◽  
Roarke A. McKinzie ◽  
Kevin M. McCarthy ◽  
Tao Xian

AbstractChanges in tropical width can have important consequences in sectors including ecosystems, agriculture, and health. Observations suggest tropical expansion over the past 30 years although studies have not agreed on the magnitude of this change. Climate model projections have also indicated an expansion and show similar uncertainty in its magnitude. This study utilizes an objective, longitudinally varying, tropopause break method to define the extent of the tropics at upper levels. The location of the tropopause break is associated with enhanced stratosphere–troposphere exchange and thus its structure influences the chemical composition of the stratosphere. The method shows regional variations in the width of the upper-level tropics in the past and future. Four modern reanalyses show significant contraction of the tropics over the eastern Pacific between 1981 and 2015, and slight but significant expansion in other regions. The east Pacific narrowing contributes to zonal mean narrowing, contradicting prior work, and is attributed to the use of monthly and zonal mean data in prior studies. Six global climate models perform well in representing the climatological location of the tropical boundary. Future projections show a spread in the width trend (from ~0.5° decade−1 of narrowing to ~0.4° decade−1 of widening), with a narrowing projected across the east Pacific and Northern Hemisphere Americas. This study illustrates that this objective tropopause break method that uses instantaneous data and does not require zonal averaging is appropriate for identifying upper-level tropical width trends and the break location is connected with local and regional changes in precipitation.


2010 ◽  
Vol 23 (22) ◽  
pp. 6100-6109 ◽  
Author(s):  
Dorian S. Abbot ◽  
Ian Eisenman ◽  
Raymond T. Pierrehumbert

Abstract Sea ice schemes with a few vertical levels are typically used to simulate the thermodynamic evolution of sea ice in global climate models. Here it is shown that these schemes overestimate the magnitude of the diurnal surface temperature cycle by a factor of 2–3 when they are used to simulate tropical ice in a Snowball earth event. This could strongly influence our understanding of Snowball termination, which occurs in global climate models when the midday surface temperature in the tropics reaches the melting point. A hierarchy of models is used to show that accurate simulation of surface temperature variation on a given time scale requires that a sea ice model resolve the e-folding depth to which a periodic signal on that time scale penetrates. This is used to suggest modifications to the sea ice schemes used in global climate models that would allow more accurate simulation of Snowball deglaciation.


Author(s):  
P. A. O’Gorman ◽  
Z. Li ◽  
W. R. Boos ◽  
J. Yuval

Projections of precipitation extremes in simulations with global climate models are very uncertain in the tropics, in part because of the use of parameterizations of deep convection and model deficiencies in simulating convective organization. Here, we analyse precipitation extremes in high-resolution simulations that are run without a convective parameterization on a quasi-global aquaplanet. The frequency distributions of precipitation rates and precipitation cluster sizes in the tropics of a control simulation are similar to the observed distributions. In response to climate warming, 3 h precipitation extremes increase at rates of up to 9 %   K − 1 in the tropics because of a combination of positive thermodynamic and dynamic contributions. The dynamic contribution at different latitudes is connected to the vertical structure of warming using a moist static stability. When the precipitation rates are first averaged to a daily timescale and coarse-grained to a typical global climate-model resolution prior to calculating the precipitation extremes, the response of the precipitation extremes to warming becomes more similar to what was found previously in coarse-resolution aquaplanet studies. However, the simulations studied here do not exhibit the high rates of increase of tropical precipitation extremes found in projections with some global climate models. This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall extremes and implications for flash flood risks’.


2020 ◽  
Vol 21 (12) ◽  
pp. 2979-2996 ◽  
Author(s):  
Saran Aadhar ◽  
Vimal Mishra

AbstractObserved and projected changes in potential evapotranspiration (PET) and drought are not well constrained in South Asia. Using five PET estimates [Thornthwaite (PET-TH), Hargreaves–Samani (PET-HS), Penman–Monteith (PET-PM), modified Penman–Monteith (PET-MPM), and energy (PET-EN)] for the observed (1979–2018, from ERA5) and future warming climate, we show that significant warming has occurred in South Asia during 1979–2018. PET changes show considerable uncertainty depending on the method used. For instance, PET-TH has increased significantly while all the other four methods show a decline in PET in the majority of South Asia during the observed period of 1979–2018. The increase in PET-TH is substantially higher than PET-HS, PET-PM, and PET-MPM due to a higher (3–4 times) sensitivity of PET-TH to warming during the observed period. Under the 1.5°, 2.0°, and 2.5°C warming worlds, global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5 GCMs) project increases in PET and drought frequency over the majority of the regions. Drought estimates based on PET-EN and PET-MPM are consistent with soil moisture–based drought estimates and project a substantial increase in the frequency of severe droughts under warming climate in South Asia. In addition, the projected frequency of severe drought based on PET-TH, which is an outlier, is about 5 times higher than PET-EN and PET-MPM. Methods to estimate PET contribute the most in the overall uncertainty of PET and drought projections in South Asia, primarily due to PET-TH. Drought estimates based on PET-TH are not reliable for the observed and projected future climate. Therefore, future drought projections should be either based on PET-EN/PET-MPM or soil moisture.


2022 ◽  
Author(s):  
Louise Busschaert ◽  
Shannon de Roos ◽  
Wim Thiery ◽  
Dirk Raes ◽  
Gabriëlle J. M. De Lannoy

Abstract. Global soil water availability is challenged by the effects of climate change and a growing population. On average 70 % of freshwater extraction is attributed to agriculture, and the demand is increasing. In this study, the effects of climate change on the evolution of the irrigation water requirement to sustain current crop productivity are assessed by using the FAO crop growth model AquaCrop version 6.1. The model is run at 0.5° lat × 0.5° lon resolution over the European mainland, assuming a general C3-type of crop, and forced by climate input data from the Inter-Sectoral Impact Model Intercomparison Project phase three (ISIMIP3). First, the performance of AquaCrop surface soil moisture (SSM) simulations using historical meteorological input from two ISIMIP3 forcing datasets is evaluated with satellite-based SSM estimates. When driven by ISIMIP3a reanalysis meteorology for the years 2011–2016, daily simulated SSM values have an unbiased root-mean-square difference of 0.08 and 0.06 m3m−3 with SSM retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions, respectively. When forced with ISIMIP3b meteorology from five Global Climate Models (GCM) for the years 2011–2020, the historical simulated SSM climatology closely agrees with the climatology of the reanalysis-driven AquaCrop SSM climatology as well as the satellite-based SSM climatologies. Second, the evaluated AquaCrop model is run to quantify the future irrigation requirement, for an ensemble of five GCMs and three different emission scenarios. The simulated net irrigation requirement (Inet) of the three summer months for a near and far future climate period (2031–2060 and 2071–2100) is compared to the baseline period of 1985–2014, to assess changes in the mean and interannual variability of the irrigation demand. Averaged over the continent and the model ensemble, the far future Inet is expected to increase by 67 mm year–1 (+30 %) under a high emission scenario Shared Socioeconomic Pathway (SSP) 3-7.0. Central and southern Europe are the most impacted with larger Inet increases. The interannual variability of Inet is likely to increase in northern and central Europe, whereas the variability is expected to decrease in southern regions. Under a high mitigation scenario (SSP1-2.6), the increase in Inet will stabilize around 40 mm year–1 towards the end of the century and interannual variability will still increase but to a smaller extent. The results emphasize a large uncertainty in the Inet projected by various GCMs.


Sign in / Sign up

Export Citation Format

Share Document