Interaction between the Black Carbon Aerosol Warming Effect and East Asian Monsoon Using RegCM4

2018 ◽  
Vol 31 (22) ◽  
pp. 9367-9388 ◽  
Author(s):  
B. L. Zhuang ◽  
S. Li ◽  
T. J. Wang ◽  
J. Liu ◽  
H. M. Chen ◽  
...  

AbstractBlack carbon aerosol (BC) has a significant influence on regional climate changes because of its warming effect. Such changes will feed back to BC loadings. Here, the interactions between the BC warming effect and the East Asian monsoon (EAM) in both winter (EAWM) and summer (EASM) are investigated using a regional climate model, RegCM4, that essentially captures the EAM features and the BC variations in China. The seasonal mean BC optical depth is 0.021 over East Asia during winter, which is 10.5% higher than that during summer. Nevertheless, the BC direct radiative forcing is 32% stronger during summer (+1.85 W m−2). The BC direct effect would induce lower air to warm by 0.11–0.12 K, which causes a meridional circulation anomaly associated with a cyclone at 20°–30°N and southerly anomalies at 850 hPa over East Asia. Consequently, the EAM circulation is weakened during winter but enhanced during summer. Precipitation is likely increased, especially in southern China during summer (by 3.73%). Relative to BC changes that result from EAM interannual variations, BC changes from its warming effect are as important but are weaker. BC surface concentrations are decreased by 1%–3% during both winter and summer, whereas the columnar BC is increased in south China during winter. During the strongest monsoon years, the BC loadings are higher at lower latitudes than those during the weakest years, resulting in more southerly meridional circulation anomalies and BC feedbacks during both winter and summer. However, the interactions between the BC warming effect and EAWM/EASM are more intense during the weakest monsoon years.

2020 ◽  
Author(s):  
Bingliang Zhuang ◽  
Tijian Wang ◽  
Shu Li ◽  
Min Xie ◽  
Mengmeng Li ◽  
...  

<p>Black carbon aerosol (BC) has a significant influence on regional climate changes due to its warming effect. Such changes will feedback to BC loadings. Here, the interactions between the BC warming effect and East Asian monsoon (EAM) in both winter (EAWM) and summer (EASM) are investigated using a regional climate model RegCM4, which essentially captures the EAM features and the BC variations in China. The seasonal mean BC optical depth is 0.021 over East Asia during winter, which is 10.5% higher than that during summer. Nevertheless, the BCs direct radiative forcing is 32% stronger during summer (+1.85 W/m<sup>2</sup>). The BC direct effect would induce lower air to warm by 0.11-0.12 K, which causes an meridional circulation anomaly associated with a cyclone at 20-30 <sup>o</sup>N and southerly anomalies at 850 hPa over East Asia. Consequently, the EAM circulation is weakened during winter but enhanced during summer. Precipitation is likely increased, especially in south China during summer (by 3.73%). Compared to BC changes due to EAM interannual variations, BC changes due to its warming effect are as important, but weaker. BC surface concentrations are decreased by 1~3% during both winter and summer, by 1~3%, while the columnar BC is increased in south China during winter. During the strongest monsoon years, the BC loadings are higher at lower latitudes than those during the weakest years, resulting in more southerly meridional circulation anomalies and BC feedbacks during both winter and summer. However, the interactions between the BC warming effect and EAWM/EASM are more intense during the weakest monsoon years.</p>


2015 ◽  
Vol 28 (11) ◽  
pp. 4330-4356 ◽  
Author(s):  
Jesse A. Day ◽  
Inez Fung ◽  
Camille Risi

Abstract The concept of the “Asian monsoon” masks the existence of two separate summer rainfall régimes: convective storms over India, Bangladesh, and Nepal (the South Asian monsoon) and frontal rainfall over China, Japan, and the Korean Peninsula (the East Asian monsoon). In addition, the Himalayas and other orography, including the Arakan Mountains, Ghats, and Yunnan Plateau, create smaller precipitation domains with abrupt boundaries. A mode of continental precipitation variability is identified that spans both South and East Asia during July and August. Point-to-point correlations and EOF analysis with Asian Precipitation–Highly-Resolved Observational Data Integration Toward Evaluation of the Water Resources (APHRODITE), a 57-yr rain gauge record, show that a dipole between the Himalayan foothills (+) and the “monsoon zone” (central India, −) dominates July–August interannual variability in South Asia, and is also associated in East Asia with a tripole between the Yangtze corridor (+) and northern and southern China (−). July–August storm tracks, as shown by lag–lead correlation of rainfall, remain mostly constant between years and do not explain this mode. Instead, it is proposed that interannual change in the strength of moisture transport from the Bay of Bengal to the Yangtze corridor across the northern Yunnan Plateau induces widespread precipitation anomalies. Abundant moisture transport along this route requires both cyclonic monsoon circulation over India and a sufficiently warm Bay of Bengal, which coincide only in July and August. Preliminary results from the LMDZ version 5 (LMDZ5) model, run with a zoomed grid over Asia and circulation nudged toward the ECMWF reanalysis, support this hypothesis. Improved understanding of this coupling may help to project twenty-first-century precipitation changes in East and South Asia, home to over three billion people.


The Holocene ◽  
2011 ◽  
Vol 22 (6) ◽  
pp. 705-715 ◽  
Author(s):  
Fengling Yu ◽  
Yongqiang Zong ◽  
Jeremy M Lloyd ◽  
Melanie J Leng ◽  
Adam D Switzer ◽  
...  

2016 ◽  
Author(s):  
Yu Hao Mao ◽  
Hong Liao

Abstract. We applied a global three-dimensional chemical transport model (GEOS-Chem) to examine the impacts of the East Asian monsoon on the interannual variations of mass concentrations and direct radiative forcing (DRF) of black carbon (BC) over eastern China (110–125° E, 20–45° N). With emissions fixed at the year 2010 levels, model simulations were driven by the Goddard Earth Observing System (GEOS-4) meteorological fields for 1986–2006 and the Modern Era Retrospective-analysis for Research and Applications (MERRA) meteorological fields for 1980–2010. During the period of 1986–2006, simulated JJA and DJF surface BC concentrations were higher in MERRA than in GEOS-4 by 0.30 µg m−3 (44 %) and 0.77 µg m−3 (54 %), respectively, because of the generally weaker precipitation in MERRA. We found that the strength of the East Asian summer monsoon (EASM, (East Asian winter monsoon, EAWM)) negatively correlated with simulated JJA (DJF) surface BC concentrations (r = –0.7 (–0.7) in GEOS-4 and –0.4 (–0.7) in MERRA), mainly by the changes in atmospheric circulation. Relative to the five strongest EASM years, simulated JJA surface BC concentrations in the five weakest monsoon years were higher over northern China (110–125° E, 28–45° N) by 0.04–0.09 µg m−3 (3–11 %), but lower over southern China (110–125° E, 20–27° N) by 0.03–0.04 µg m−3 (10–11 %). Compared to the five strongest EAWM years, simulated DJF surface BC concentrations in the five weakest monsoon years were higher by 0.13–0.15 µg m−3 (5–8 %) in northern China and by 0.04–0.10 µg m−3 (3–12 %) in southern China. The resulting JJA (DJF) mean all-sky DRF of BC at the top of the atmosphere were 0.04 W m−2 (3 %, (0.03 W m−2, 2 %)) higher in northern China but 0.06 W m−2 (14 %, (0.03 W m−2, 3 %)) lower in southern China. In the weakest monsoon years, the weaker vertical convection led to the lower BC concentrations above 1–2 km in southern China, and therefore the lower BC DRF in the region. The differences in vertical profiles of BC between the weakest and strongest EASM years (1998–1997) and EAWM years (1990–1996) reached up to –0.09 µg m−3 (–46 %) and –0.08 µg m−3 (–11 %) at 1–2 km in eastern China.


2017 ◽  
Vol 17 (7) ◽  
pp. 4799-4816 ◽  
Author(s):  
Yu-Hao Mao ◽  
Hong Liao ◽  
Hai-Shan Chen

Abstract. We applied a global three-dimensional chemical transport model (GEOS-Chem) to examine the impacts of the East Asian monsoon on the interannual variations of mass concentrations and direct radiative forcing (DRF) of black carbon (BC) over eastern China (110–125° E, 20–45° N). With emissions fixed at the year 2010 levels, model simulations were driven by the Goddard Earth Observing System (GEOS-4) meteorological fields for 1986–2006 and the Modern Era Retrospective-analysis for Research and Applications (MERRA) meteorological fields for 1980–2010. During the period of 1986–2006, simulated June–July–August (JJA) and December–January–February (DJF) surface BC concentrations were higher in MERRA than in GEOS-4 by 0.30 µg m−3 (44 %) and 0.77 µg m−3 (54 %), respectively, because of the generally weaker precipitation in MERRA. We found that the strength of the East Asian summer monsoon (EASM; East Asian winter monsoon, EAWM) negatively correlated with simulated JJA (DJF) surface BC concentrations (r = −0. 7 (−0.7) in GEOS-4 and −0.4 (−0.7) in MERRA), mainly by the changes in atmospheric circulation. Relative to the 5 strongest EASM years, simulated JJA surface BC concentrations in the 5 weakest monsoon years were higher over northern China (110–125° E, 28–45° N) by 0.04–0.09 µg m−3 (3–11 %), but lower over southern China (110–125° E, 20–27° N) by 0.03–0.04 µg m−3 (10–11 %). Compared to the 5 strongest EAWM years, simulated DJF surface BC concentrations in the 5 weakest monsoon years were higher by 0.13–0.15 µg m−3 (5–8 %) in northern China and by 0.04–0.10 µg m−3 (3–12 %) in southern China. The resulting JJA (DJF) mean all-sky DRF of BC at the top of the atmosphere was 0.04 W m−2 (3 %; 0.03 W m−2, 2 %) higher in northern China but 0.06 W m−2 (14 %; 0.03 W m−2, 3 %) lower in southern China. In the weakest monsoon years, the weaker vertical convection at the elevated altitudes led to the lower BC concentrations above 1–2 km in southern China, and therefore the lower BC DRF in the region. The differences in vertical profiles of BC between the weakest and strongest EASM years (1998–1997) and EAWM years (1990–1996) reached up to −0.09 µg m−3 (−46 %) and −0.08 µg m−3 (−11 %) at 1–2 km in eastern China.


2013 ◽  
Vol 9 (5) ◽  
pp. 2085-2099 ◽  
Author(s):  
R. Zhang ◽  
Q. Yan ◽  
Z. S. Zhang ◽  
D. Jiang ◽  
B. L. Otto-Bliesner ◽  
...  

Abstract. Based on simulations with 15 climate models in the Pliocene Model Intercomparison Project (PlioMIP), the regional climate of East Asia (focusing on China) during the mid-Pliocene is investigated in this study. Compared to the pre-industrial, the multi-model ensemble mean (MMM) of all models shows the East Asian summer winds (EASWs) largely strengthen in monsoon China, and the East Asian winter winds (EAWWs) strengthen in south monsoon China but slightly weaken in north monsoon China in the mid-Pliocene. The MMM of all models also illustrates a warmer and wetter mid-Pliocene climate in China. The simulated weakened mid-Pliocene EAWWs in north monsoon China and intensified EASWs in monsoon China agree well with geological reconstructions. However, there is a large model–model discrepancy in simulating mid-Pliocene EAWW, which should be further addressed in the future work of PlioMIP.


2013 ◽  
Vol 9 (1) ◽  
pp. 1135-1164 ◽  
Author(s):  
R. Zhang ◽  
Q. Yan ◽  
Z. S. Zhang ◽  
D. Jiang ◽  
B. L. Otto-Bliesner ◽  
...  

Abstract. Based on the simulations with fifteen climate models in the Pliocene Model Intercomparison Project (PlioMIP), the regional climate of East Asia (focusing on China) during the mid-Pliocene is investigated in this study. Compared to the pre-industrial, the multi-model ensemble mean (MMM) of all models shows the East Asian summer wind (EASW) largely strengthens in monsoon China, and the East Asian winter wind (EAWW) strengthens in south monsoon China but slightly weakens in north monsoon China in mid-Pliocene. The MMM of all models also illustrates a warmer and wetter mid-Pliocene climate in China. The simulated weakened mid-Pliocene EAWW in north monsoon China and intensified EASW in monsoon China agree well with geological reconstructions. However, the model-model discrepancy in simulating mid-Pliocene East Asian monsoon climate, in particular EAWW, should be further addressed in the future work of PlioMIP.


Sign in / Sign up

Export Citation Format

Share Document