Detection of Anthropogenic Influence on Fixed Threshold Indices of Extreme Temperature

2018 ◽  
Vol 31 (16) ◽  
pp. 6341-6352 ◽  
Author(s):  
Hong Yin ◽  
Ying Sun

Threshold indices of extreme temperature are defined based on temperature values that fall above or below fixed thresholds and thus have important implications for agriculture, engineering, and human health. Here, we focus on four extreme temperature fixed threshold indices and their detection and attribution at the global and continental scales, as well as within China. These indices include the number of days with daily minimum temperatures below 0°C [frost days (FD)] and above 20°C [tropical nights (TR)] and the number of days with daily maximum temperatures below 0°C [ice days (ID)] and above 25°C [summer days (SU)]. We employ an optimal fingerprinting method to compare the spatial and temporal changes in these fixed threshold indices assessed from observations and simulations performed with multiple models. We find that an anthropogenic signal can be robustly detected in these fixed threshold indices at scales of over the globe, most of the continents, and China. A natural signal cannot be identified in the changes in most of the indices, thus indicating the dominant role of anthropogenic forcing in producing these changes. In North and South America, the models show poor performance in reproducing the fixed threshold indices related to daily maximum temperature. The changes in summer days are not clearly related to their responses to external forcing over these two continents. This study provides a useful complement to other detection studies and sheds light on the importance of anthropogenic forcing in determining most of the fixed threshold indices at the global scale and over most of the continents, compared with internal variability.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiayan Ren ◽  
Guohe Huang ◽  
Yongping Li ◽  
Xiong Zhou ◽  
Jinliang Xu ◽  
...  

A heat wave is an important meteorological extreme event related to global warming, but little is known about the characteristics of future heat waves in Guangdong. Therefore, a stepwise-clustered simulation approach driven by multiple global climate models (i.e., GCMs) is developed for projecting future heat waves over Guangdong under two representative concentration pathways (RCPs). The temporal-spatial variations of four indicators (i.e., intensity, total intensity, frequency, and the longest duration) of projected heat waves, as well as the potential changes in daily maximum temperature (i.e., Tmax) for future (i.e., 2006–2095) and historical (i.e., 1976–2005) periods, were analyzed over Guangdong. The results indicated that Guangdong would endure a notable increasing annual trend in the projected Tmax (i.e., 0.016–0.03°C per year under RCP4.5 and 0.027–0.057°C per year under RCP8.5). Evaluations of the multiple GCMs and their ensemble suggested that the developed approach performed well, and the model ensemble was superior to any single GCM in capturing the features of heat waves. The spatial patterns and interannual trends displayed that Guangdong would undergo serious heat waves in the future. The variations of intensity, total intensity, frequency, and the longest duration of heat wave are likely to exceed 5.4°C per event, 24°C, 25 days, and 4 days in the 2080s under RCP8.5, respectively. Higher variation of those would concentrate in eastern and southwestern Guangdong. It also presented that severe heat waves with stronger intensity, higher frequency, and longer duration would have significant increasing tendencies over all Guangdong, which are expected to increase at a rate of 0.14, 0.83, and 0.21% per year under RCP8.5, respectively. Over 60% of Guangdong would suffer the moderate variation of heat waves to the end of this century under RCP8.5. The findings can provide decision makers with useful information to help mitigate the potential impacts of heat waves on pivotal regions as well as ecosystems that are sensitive to extreme temperature.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1171
Author(s):  
Junju Zhou ◽  
Jumei Huang ◽  
Xi Zhao ◽  
Li Lei ◽  
Wei Shi ◽  
...  

The increase in the frequency and intensity of extreme weather events around the world has led to the frequent occurrence of global disasters, which have had serious impacts on the society, economic and ecological environment, especially fragile arid areas. Based on the daily maximum temperature and daily minimum temperature data of four meteorological stations in Shiyang River Basin (SRB) from 1960 to 2015, the spatio-temporal variation characteristics of extreme temperature indices were analyzed by means of univariate linear regression analysis, Mann–Kendall test and correlation analysis. The results showed that the extreme temperatures warming indices and the minimum of daily maximum temperature (TXn) and the minimum of daily minimum temperature (TNn) of cold indices showed an increasing trend from 1960 to 2016, especially since the 1990s, where the growth rate was fast and the response to global warming was sensitive. Except TXn and TNn, other cold indices showed a decreasing trend, especially Diurnal temperature (DTR) range, which decreased rapidly, indicating that the increasing speed of daily min-temperature were greater than of daily max-temperature in SRB. In space, the change tendency rate of the warm index basically showed an obvious altitude gradient effect that decreased with the altitude, which was consistent with Frost day (FD0) and Cool nights (TN10p) in the cold index, while Ice days (ID0) and Cool days (TX10p) are opposite. The mutation of the cold indices occurred earlier than the warm indices, illustrating that the cold indices in SRB were more sensitive to global warming. The change in extreme temperatures that would have a significant impact on the vegetation and glacier permafrost in the basin was the result of the combined function of different atmospheric circulation systems, which included the Arctic polar vortex, Western Pacific subtropical high and Qinghai-tibet Plateau circulation.


2021 ◽  
Author(s):  
Farhan Aziz ◽  
Nadeem Tariq ◽  
Akif Rahim ◽  
Ambreen Mahmood

<p>In recent years, extreme events and their severe damage have become more common around the world. It is widely known that atmospheric greenhouse gases have contributed to global warming. <br>A set of appropriate indicators describing the extremes of climate change can be used to study the extent of climate change. This study reveals the trends of temperature extreme indices on the spatial scale in the western part of Northwest Himalayas. The study is conducted at 13 climate stations lies at a different altitude of the study area.The Daily maximum and minimum temperature data during 2000--2018 of stations obtained from the Pakistan Meteorological Department (PMD) and Water and Power Development Authority (WAPDA). The 12 extreme temperature indices (FD, SU, TXx , TXn., TNx, TNn, TN10p , TN90p, TX10p , TX90p, CSDI, WSDI) recommended by ETCCDI (Expert Team on Climate Change Detection and Indices) are used to study the variabilities in temperature extremes. These indices are characterized based on amplitude, persistence, and frequency. The analysis is performed by using R package of extremes “RClimDEX”. The analysis shows the frequency of summer days (Su) and warm spells (WSDI) have increasing trends in the Southwest region, whereas the frequency of cold spells and frost days have decreasing trends observed in the Northern region of the study areas. The maximum and minimum values of daily maximum temperature (TXX, TXN) increase in the foothill area of the region and decreasing trends in the high elevation region. The day and night get cool in the Northwest region, whereas the days and nights are showing warmer trends in low elevation regions of the study area. Overall, the study concludes that the Northwestern parts have cool trends while South West and South eastern parts have warm trends during the early 21st century.</p><p><strong>Key words:</strong>  Temperature Extremes, Northwest Himalayas, Trends, R-Climdex, Climate Change</p>


2020 ◽  
Author(s):  
Ivana Tosic ◽  
Suzana Putniković ◽  
Milica Tošić

<p>Worldwide studies revealed a general increase in frequency and severity of warm extreme temperature events. In this study, extreme temperature events including Heat waves (HWs) are examined. Extreme indices are calculated based on daily maximum temperature (Tx). The following definitions are employed: SU - number of days with Tx > 25 °C, umber of days with Tx > 90<sup>th</sup> percentile, and WSDI - number of days in intervals of at least six consecutive days for which Tx is higher than the calendar day 90<sup>th</sup> percentile. Daily values of air temperatures from 11 meteorological stations distributed across Serbia were used for the period 1949–2017.</p><p>Trends of extreme temperature events and their frequencies are examined. The period 1949–2017 are characterised by a warming of extreme temperature indices (SU, Tx90, HWs). It is found that maximum air temperatures increased at all stations, but statistically significant at 6 stations in winter, 4 stations in summer and two stations in spring. The average number of SU per station was between 63.1 in Novi Sad to 73.5 in Negotin during the summer season. Significant increase of SU is recorded in summer for 10 out of 11 stations. Positive trends of SU and Tx90 are observed for all stations and seasons, except in Novi Sad. The average number of Tx90 is about 9 for all stations in all seasons. The longest heat waves prevailed in 2012, but the most severe are recorded in 2007. Increasing of warm extreme events in Serbia are in agreement with studies for different regions of the world.</p>


2013 ◽  
Vol 52 (11) ◽  
pp. 2450-2459 ◽  
Author(s):  
Olga Clorinda Penalba ◽  
María Laura Bettolli ◽  
Pablo Andrés Krieger

AbstractLa Plata basin is one of the most important agricultural and hydropower-producing regions in the world. Extreme climate events such as cold and heat waves and frost events have a significant socioeconomic impact. This work analyzes the influence of the surface circulation in southern South America on daily maximum temperature TMAX and daily minimum temperature TMIN in southern La Plata basin. A Z test for the comparison of mean values and a Kolmogorov–Smirnov test for the comparison of distributions of TMAX and TMIN associated with each circulation pattern were performed. Specific daily surface circulation types are found to contribute to TMAX and TMIN anomalies and to have a predominant occurrence in the development of the extreme temperature events in the region. The TMAX spatial response to the regional low-level circulation is more homogenous and extended than is the response of TMIN.


2013 ◽  
Vol 8 (3) ◽  
pp. 186-194

It is well known that the studies that associate the climatic changes with the greenhouse effect, as a sequence of uninterruptedly ongoing figures in the concentration mainly of carbon dioxide, have been focused on the trends of the mean temperature. On the other hand the variability and the trends of the extreme temperature values have not been considered sufficiently. We notice that the variability of the maximum and minimum temperature values and generally of the extreme weather has direct economic and societal implications. The interest in this paper is focused on the study of the trends of the daily and the monthly maximum temperature during the warm months July and August for the time period from 1955 to 2000 in the wide Athens area and specifically measurements of the Nea Philadelphia and Helliniko meteorological stations. Nea Philadelphia represents an immiscibly urban area station, while Helliniko a coastal suburban area one. The specific sites were selected for the comparative study of the temperature maximum trends in a time period which covers the population growth in the area of Athens. For the whole time period, the differences of the daily maximum temperature from the corresponding 10-days period mean maximum temperatures per month were calculated for each site. Then, the days with positive difference per month and per year as well as the trends of the time-series for each station were recorded along with the statistical significance of the regression slope’s value using the Student t-test distribution. Furthermore, in order to identify the “warmest decade” in the time-series, a study of the daily maximum temperature trend for the months July and August was performed for each decade followed by a test for the statistical significance of the slope coefficient. It is known that the presumable differences of the temperature time-series depend on the influence of the urbanization, the modification of the natural suburban environment and / or on the stations’ displacement. Based on these facts, we present more in this paper the conclusions of a comparative study of the results regarding each station analytically as well as the interpretation of the results concerning all the stations as an ensemble.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1345
Author(s):  
Do-Hyun Kim ◽  
Ho-Jeong Shin ◽  
Il-Ung Chung

We investigated the effect of artificial marine cloud brightening on extreme temperatures over East Asia. We used simulation data from five global climate models which have conducted the GeoMIP G4cdnc experiment. G4cdnc was designed to simulate an increase in the cloud droplet number concentration of the global marine lower clouds by 50% under the greenhouse gas forcing of the RCP4.5 scenario. G4cdnc decreased the net radiative forcing in the top of the atmosphere more over the ocean, alleviating the rise in mean temperature under RCP4.5 forcing. For extreme temperatures, G4cdnc reduced both the monthly minimum of daily minimum temperature (TNn) and monthly maximum of daily maximum temperature (TXx). The response of TNn was higher than that of TXx, especially in the winter, over the Sea of Okhotsk and the interior of the continent. This spatial heterogeneity and seasonality of the response were associated with sea ice–albedo and snow–albedo feedbacks. We also calculated the efficacy of warming mitigation as a measure of the relative effect of geoengineering. The efficacy for TXx was higher than that for TNn, opposite to the absolute effect. After the termination of geoengineering, both TNn and TXx tended to rapidly revert to their trend under the RCP4.5 forcing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emily J. Wilkins ◽  
Peter D. Howe ◽  
Jordan W. Smith

AbstractDaily weather affects total visitation to parks and protected areas, as well as visitors’ experiences. However, it is unknown if and how visitors change their spatial behavior within a park due to daily weather conditions. We investigated the impact of daily maximum temperature and precipitation on summer visitation patterns within 110 U.S. National Park Service units. We connected 489,061 geotagged Flickr photos to daily weather, as well as visitors’ elevation and distance to amenities (i.e., roads, waterbodies, parking areas, and buildings). We compared visitor behavior on cold, average, and hot days, and on days with precipitation compared to days without precipitation, across fourteen ecoregions within the continental U.S. Our results suggest daily weather impacts where visitors go within parks, and the effect of weather differs substantially by ecoregion. In most ecoregions, visitors stayed closer to infrastructure on rainy days. Temperature also affects visitors’ spatial behavior within parks, but there was not a consistent trend across ecoregions. Importantly, parks in some ecoregions contain more microclimates than others, which may allow visitors to adapt to unfavorable conditions. These findings suggest visitors’ spatial behavior in parks may change in the future due to the increasing frequency of hot summer days.


2014 ◽  
Vol 53 (9) ◽  
pp. 2148-2162 ◽  
Author(s):  
Bárbara Tencer ◽  
Andrew Weaver ◽  
Francis Zwiers

AbstractThe occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.


Sign in / Sign up

Export Citation Format

Share Document