scholarly journals Breakdown of the Summertime Meridional Teleconnection Pattern over the Western North Pacific and East Asia since the Early 2000s

2020 ◽  
Vol 33 (19) ◽  
pp. 8487-8505
Author(s):  
Xinyu Li ◽  
Riyu Lu

AbstractThe meridional teleconnection over the western North Pacific and East Asia (WNP–EA) plays a predominant role in affecting the interannual variability of East Asian climate in summer. This study identified a breakdown of the meridional teleconnection since the early 2000s. Before the early 2000s, there are close tropical–extratropical relationships in light of both circulation and rainfall anomalies. For instance, the westward extension of the western North Pacific subtropical high (WNPSH) is closely associated with the southward shift of the East Asian westerly jet (EAJ), and more rainfall in the tropical WNP closely corresponds to less rainfall in the subtropical WNP–EA. However, after the early 2000s, the tropical–extratropical relationships are absent. Particularly, the tropical WNP precipitation anomalies can induce WNPSH anomalies, but the WNPSH anomalies cannot induce subtropical precipitation in the latter period, due to the absence of EAJ-related extratropical circulation anomalies. Further results indicate that in the latter period, the westward extension of the WNPSH is associated with the decay of central Pacific-like El Niño, and simultaneous summer sea surface temperature (SST) anomalies in the central eastern Pacific favor the northward shift of the EAJ, resulting in the disruption of the WNPSH–EAJ relationship. This evolution of tropical SSTs is sharply different from the decay of canonical El Niño and simultaneous summer tropical Indian Ocean warming, which favor the WNPSH–EAJ correspondence in the former period.

2018 ◽  
Vol 32 (1) ◽  
pp. 213-230 ◽  
Author(s):  
Chao He ◽  
Tianjun Zhou ◽  
Tim Li

Abstract The western North Pacific subtropical anticyclone (WNPAC) is the most prominent atmospheric circulation anomaly over the subtropical Northern Hemisphere during the decaying summer of an El Niño event. Based on a comparison between the RCP8.5 and the historical experiments of 30 coupled models from the CMIP5, we show evidence that the anomalous WNPAC during the El Niño–decaying summer is weaker in a warmer climate although the amplitude of the El Niño remains generally unchanged. The weakened impact of the sea surface temperature anomaly (SSTA) over the tropical Indian Ocean (TIO) on the atmosphere is essential for the weakened anomalous WNPAC. In a warmer climate, the warm tropospheric temperature (TT) anomaly in the tropical free troposphere stimulated by the El Niño–related SSTA is enhanced through stronger moist adiabatic adjustment in a warmer mean state, even if the SSTA of El Niño is unchanged. But the amplitude of the warm SSTA over TIO remains generally unchanged in an El Niño–decaying summer, the static stability of the boundary layer over TIO is increased, and the positive rainfall anomaly over TIO is weakened. As a result, the warm Kelvin wave emanating from TIO is weakened because of a weaker latent heating anomaly over TIO, which is responsible for the weakened WNPAC anomaly. Numerical experiments support the weakened sensitivity of precipitation anomaly over TIO to local SSTA under an increase of mean-state SST and its essential role in the weakened anomalous WNPAC, independent of any change in the SSTA.


2020 ◽  
Vol 33 (8) ◽  
pp. 3271-3288
Author(s):  
Juan Feng ◽  
Wen Chen ◽  
Xiaocong Wang

AbstractThe El Niño Modoki–induced anomalous western North Pacific anticyclone (WNPAC) undergoes an interesting reintensification process in the El Niño Modoki decaying summer, the period when El Niño Modoki decays but warm sea surface temperature (SST) anomalies over the tropical North Atlantic (TNA) and cold SST anomalies over the central-eastern Pacific (CEP) dominate. In this study, the region (TNA or CEP) in which the SST anomalies exert a relatively important influence on reintensification of the WNPAC is investigated. Observational analysis demonstrates that when only anomalous CEP SST cooling occurs, the WNPAC experiences a weak reintensification. In contrast, when only anomalous TNA SST warming emerges, the WNPAC experiences a remarkable reintensification. Numerical simulation analysis demonstrates that even though the same magnitude of CEP SST cooling and TNA warming is respectively set to force the atmospheric general circulation model, the response of the WNPAC is still much stronger in the TNA warming experiment than in the CEP cooling experiment. Further analysis demonstrates that this difference is caused by the distinct location of the effective tropical forcing between the CEP SST cooling and TNA SST warming for producing a WNPAC. The CEP cooling-induced effective anomalous diabatic cooling is located in the central Pacific, by which the forced anticyclone becomes gradually weak from the central Pacific to the western North Pacific. Thus, a weak WNPAC is produced. In contrast, as the TNA SST warming–induced effective anomalous diabatic cooling is just located in the western North Pacific via a Kelvin wave–induced Ekman divergence process, the forced anticyclone is significant and powerful in the western North Pacific.


2019 ◽  
Vol 32 (23) ◽  
pp. 8021-8045 ◽  
Author(s):  
Yumi Choi ◽  
Kyung-Ja Ha ◽  
Fei-Fei Jin

Abstract Both the impacts of two types of El Niño on the western North Pacific (WNP) tropical cyclone (TC) activity and the seasonality in the relationship between genesis potential index (GPI) and El Niño–Southern Oscillation (ENSO) are investigated. The ENSO-induced GPI change over the northwestern (southeastern) part of the WNP is mostly attributed to the relative humidity (absolute vorticity) term, revealing a distinct meridional and zonal asymmetry in summer and fall, respectively. The seasonal change in ENSO (background states) from summer to fall is responsible for the seasonal change in GPI anomalies south of 20°N (over the northeastern part of the WNP). The downdraft induced by the strong upper-level convergence in the eastern Pacific (EP)-type El Niño and both the northwestward-shifted relative vorticity and northward-extended convection over the southeastern part of the WNP in the central Pacific (CP)-type El Niño lead to distinct TC impacts over East Asia (EA). The southward movement of genesis location of TCs and increased westward-moving TCs account for the enhanced strong typhoon activity for the EP-type El Niño in summer. In fall the downdraft and anomalous anticyclonic steering flows over the western part of the WNP remarkably decrease TC impacts over EA. The enhanced moist static energy and midlevel upward motion over the eastern part of the WNP under the northern off-equatorial sea surface temperature warming as well as longer passage of TCs toward EA are responsible for the enhanced typhoon activity for the CP-type El Niño. It is thus important to consider the seasonality and El Niño pattern diversity to explore the El Niño–induced TC impacts over EA.


2016 ◽  
Vol 29 (10) ◽  
pp. 3607-3627 ◽  
Author(s):  
Wei Chen ◽  
June-Yi Lee ◽  
Kyung-Ja Ha ◽  
Kyung-Sook Yun ◽  
Riyu Lu

Abstract Two types of El Niño evolution have been identified in terms of the lengths of their decaying phases: the first type is a short decaying El Niño that terminates in the following summer after the mature phase, and the second type is a long decaying one that persists until the subsequent winter. The responses of the western North Pacific anticyclone (WNPAC) anomaly to the two types of evolution are remarkably different. Using experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5), this study investigates how well climate models reproduce the two types of El Niño evolution and their impacts on the WNPAC in the historical period (1950–2005) and how they will change in the future under anthropogenic global warming. To reduce uncertainty in future projection, the nine best models are selected based on their performance in simulating El Niño evolution. In the historical run, the nine best models’ multimodel ensemble (B9MME) well reproduces the enhanced (weakened) WNPAC that is associated with the short (long) decaying El Niño. The comparison between results of the historical run for 1950–2005 and the representative concentration pathway 4.5 run for 2050–99 reveals that individual models and the B9MME tend to project no significant changes in the two types of El Niño evolution for the latter half of the twenty-first century. However, the WNPAC response to the short decaying El Niño is considerably intensified, being associated with the enhanced negative precipitation anomaly response over the equatorial central Pacific. This enhancement is attributable to the robust increase in mean and interannual variability of precipitation over the equatorial central Pacific under global warming.


2020 ◽  
Vol 33 (17) ◽  
pp. 7371-7389
Author(s):  
Inmaculada Vega ◽  
Pedro Ribera ◽  
David Gallego

ABSTRACTThe western North Pacific summer monsoon (WNPSM) onset and withdrawal dates as well as its breaks have been determined throughout the 1949–2014 period by defining the monsoon daily directional index (MDDI). This index, developed exclusively with wind direction observations, is an upgrade of the monthly western North Pacific directional index. The onset date shows a high interannual variability, varying between early May and early August, whereas the WNPSM withdrawal shows a lower interannual variability, occurring between October and mid-November. The MDDI reflects the multibreak character of the WNPSM. Breaks, which tend to last a few weeks, are more likely to happen from mid-August to early September and from late June to mid-July. This bimodal distribution shows decadal variability. In addition, the monsoon dates determined by the MDDI show very good agreement with relationships previously described in literature, such as the influence of tropical Pacific SST on the monsoon onset/withdrawal and changes in tropical cyclone (TC) tracks related to monsoon breaks. The WNPSM tends to start earlier (later) and finish later (earlier) under eastern Pacific (EP) La Niña (El Niño) conditions, especially from the 1980s on. Central Pacific (CP) ENSO is also associated with the monsoon withdrawal, which is advanced (delayed) under CP El Niño (La Niña). TCs tend to move from the Philippine Sea to the South China Sea during active monsoon days whereas they tend to reach higher latitudes during inactive monsoon days, especially in August and July.


2016 ◽  
Vol 29 (18) ◽  
pp. 6401-6423 ◽  
Author(s):  
Rongqing Han ◽  
Hui Wang ◽  
Zeng-Zhen Hu ◽  
Arun Kumar ◽  
Weijing Li ◽  
...  

Abstract An assessment of simulations of the interannual variability of tropical cyclones (TCs) over the western North Pacific (WNP) and its association with El Niño–Southern Oscillation (ENSO), as well as a subsequent diagnosis for possible causes of model biases generated from simulated large-scale climate conditions, are documented in the paper. The model experiments are carried out by the Hurricane Work Group under the U.S. Climate Variability and Predictability Research Program (CLIVAR) using five global climate models (GCMs) with a total of 16 ensemble members forced by the observed sea surface temperature and spanning the 28-yr period from 1982 to 2009. The results show GISS and GFDL model ensemble means best simulate the interannual variability of TCs, and the multimodel ensemble mean (MME) follows. Also, the MME has the closest climate mean annual number of WNP TCs and the smallest root-mean-square error to the observation. Most GCMs can simulate the interannual variability of WNP TCs well, with stronger TC activities during two types of El Niño—namely, eastern Pacific (EP) and central Pacific (CP) El Niño—and weaker activity during La Niña. However, none of the models capture the differences in TC activity between EP and CP El Niño as are shown in observations. The inability of models to distinguish the differences in TC activities between the two types of El Niño events may be due to the bias of the models in response to the shift of tropical heating associated with CP El Niño.


2017 ◽  
Vol 30 (22) ◽  
pp. 8845-8864 ◽  
Author(s):  
Li Tao ◽  
Tim Li ◽  
Yuan-Hui Ke ◽  
Jiu-Wei Zhao

A Pacific–Japan (PJ) pattern index is defined based on the singular value decomposition (SVD) analysis of summertime 500-hPa height in East Asia and precipitation in the tropical western North Pacific (WNP). The time series of this PJ index shows clearly the interannual and interdecadal variations since 1948. Idealized atmospheric general circulation model (AGCM) experiments were carried out to understand the remote and local SST forcing in causing the interannual variations of the PJ pattern and interdecadal variations of the PJ-like pattern. It is found that the PJ interannual variation is closely related to El Niño–Southern Oscillation (ENSO). A basinwide warming occurs in the tropical Indian Ocean (TIO) during El Niño mature winter. The TIO warming persists from the El Niño peak winter to the succeeding summer. Meanwhile, a cold SST anomaly (SSTA) appears in the eastern WNP and persists from the El Niño mature winter to the succeeding summer. Idealized AGCM experiments that separate the TIO and WNP SSTA forcing effects show that both the remote eastern TIO forcing and local WNP SSTA forcing are important in affecting atmospheric heating anomaly in the WNP monsoon region, which further impacts the PJ interannual teleconnection pattern over East Asia. In contrast to the interannual variation, the interdecadal change of the PJ-like pattern is primarily affected by the interdecadal change of SST in the TIO rather than by the local SSTA in the WNP.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Yuhang Liu ◽  
Sun-Kwon Yoon ◽  
Jong-Suk Kim ◽  
Lihua Xiong ◽  
Joo-Heon Lee

This study investigated the effects of El Niño events on tropical cyclone (TC) characteristics over the western North Pacific (WNP) region. First, TC characteristics associated with large-scale atmospheric phenomena (i.e., genesis position, frequency, track, intensity, and duration) were investigated in the WNP in relation to various types of El Niño events—moderate central Pacific (MCP), moderate eastern Pacific (MEP), and strong basin-wide (SBW). Subsequently, the seasonal and regional variability of TC-induced rainfall across China was analyzed to compare precipitation patterns under the three El Niño types. When extreme El Niño events of varying degrees occurred, the local rainfall varied during the developmental and decaying years. The development of MEP and SBW was associated with a distinct change in TC-induced rainfall. During MEP development, TC-induced rainfall occurred in eastern and northeastern China, whereas in SBW, TC-induced heavy rainfall occurred in southwest China. During SBW development, the southwestern region was affected by TCs over a long period, with the eastern and northeastern regions being affected significantly fewer days. During El Niño decay, coastal areas were relatively more affected by TCs during MCP events, and the Pearl River basin was more affected during SBW events. This study’s results could help mitigate TC-related disasters and improve water-supply management.


Sign in / Sign up

Export Citation Format

Share Document