scholarly journals Contributing Factors to Spatiotemporal Variations of Outgoing Longwave Radiation (OLR) in the Tropics

2019 ◽  
Vol 32 (15) ◽  
pp. 4621-4640
Author(s):  
Faiz R. Fajary ◽  
Tri W. Hadi ◽  
Shigeo Yoden

Abstract Factors governing spatiotemporal variations of the daily outgoing longwave radiation (OLR) are studied using 35-yr (1979–2013) data records by employing multiple linear regression, wavelet transforms, and bandpass filtering methods. From the regression coefficients of nine predictors and the explained variances, we found that the largest contributions to OLR variability are associated with the Madden–Julian oscillation and El Niño–Southern Oscillation (ENSO). The ENSO signatures on OLR show dipole patterns over the Maritime Continent (MC) and Pacific regions with an extension to the Atlantic. Subsequently, the third significant contribution of the Indian Ocean dipole is confined to the Indian Ocean and Africa. Then, the solar cycle and stratospheric aerosols show mainly negative correlations, while a positive linear trend is observed mainly in the Northern Hemisphere. Lastly, factors associated with the stratospheric quasi-biennial oscillation (QBO) are the least significant contributor to OLR. In terms of oscillatory signals, time–longitude variations of the annual cycle (AC) show pairs of contrasting phases that characterize monsoon systems, in which the MC and Pacific regions are found to be in the same phase group. The most consistent AC signals are found to correspond with North and South American monsoons that respectively exhibit weakening and strengthening trends. Wavelet spectra and filtered OLR signals in intraseasonal oscillation, QBO, and ENSO frequency bands show an interdependent relationship that largely varies with time scale and longitudes.

2013 ◽  
Vol 26 (22) ◽  
pp. 8850-8867 ◽  
Author(s):  
Andrew Hoell ◽  
Mathew Barlow ◽  
Roop Saini

Abstract Deep tropical convection over the Indian Ocean leads to intense diabatic heating, a main driver of the climate system. The Northern Hemisphere circulation and precipitation associated with intraseasonal and seasonal-to-interannual components of the leading pattern of Indian Ocean convection are investigated for November–April 1979–2008. The leading pattern of Indian Ocean convection is separated into intraseasonal and seasonal-to-interannual components by filtering an index of outgoing longwave radiation at 33–105 days and greater than 105 days, yielding Madden–Julian oscillation (MJO)- and El Niño–Southern Oscillation (ENSO)-influenced patterns, respectively. Observations and barotropic Rossby wave ray tracing experiments suggest that Indian Ocean convection can influence the ENSO-related hemispheric teleconnection pattern in addition to the regional Asian teleconnection. Equivalent barotropic circulation anomalies throughout the Northern Hemisphere subtropics are associated with both seasonal-to-interannual Indian Ocean convection and ENSO. The hemispheric teleconnection associated with seasonal-to-interannual Indian Ocean convection is investigated with ray tracing, which suggests that forcing over the Indian Ocean can propagate eastward across the hemisphere and back to Asia. The relationship between the seasonal-to-interannual component of Indian Ocean convection and ENSO is investigated in terms of a gradient in sea surface temperatures (SST) over the equatorial western Pacific Ocean. When the western Pacific SST gradient is strong during ENSO, strong Maritime Continent precipitation extends further westward into the Indian Ocean, which is accompanied by enhanced tropospheric Asian circulation, similar to the seasonal-to-interannual component of Indian Ocean convection. Analysis of the three strongest interannual convection seasons shows that the strong Indian Ocean pattern of ENSO can dominate individual seasons.


2021 ◽  
Author(s):  
Michael Mayer ◽  
Magdalena Alonso Balmaseda

AbstractThis study investigates the influence of the anomalously warm Indian Ocean state on the unprecedentedly weak Indonesian Throughflow (ITF) and the unexpected evolution of El Niño-Southern Oscillation (ENSO) during 2014–2016. It uses 25-month-long coupled twin forecast experiments with modified Indian Ocean initial conditions sampling observed decadal variations. An unperturbed experiment initialized in Feb 2014 forecasts moderately warm ENSO conditions in year 1 and year 2 and an anomalously weak ITF throughout, which acts to keep tropical Pacific ocean heat content (OHC) anomalously high. Changing only the Indian Ocean to cooler 1997 conditions substantially alters the 2-year forecast of Tropical Pacific conditions. Differences include (i) increased probability of strong El Niño in 2014 and La Niña in 2015, (ii) significantly increased ITF transports and (iii), as a consequence, stronger Pacific ocean heat divergence and thus a reduction of Pacific OHC over the two years. The Indian Ocean’s impact in year 1 is via the atmospheric bridge arising from altered Indian Ocean Dipole conditions. Effects of altered ITF and associated ocean heat divergence (oceanic tunnel) become apparent by year 2, including modified ENSO probabilities and Tropical Pacific OHC. A mirrored twin experiment starting from unperturbed 1997 conditions and several sensitivity experiments corroborate these findings. This work demonstrates the importance of the Indian Ocean’s decadal variations on ENSO and highlights the previously underappreciated role of the oceanic tunnel. Results also indicate that, given the physical links between year-to-year ENSO variations, 2-year-long forecasts can provide additional guidance for interpretation of forecasted year-1 ENSO probabilities.


2021 ◽  
pp. 1
Author(s):  
X. R. Zhao ◽  
Z. Sheng ◽  
H. Q. Shi ◽  
L. B. Weng ◽  
Y. He

AbstractUsing temperature data measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument from February 2002 to March 2020, the temperature linear trend and temperature responses to the solar cycle (SC), Quasi-Biennial Oscillation (QBO), and El Niño-Southern Oscillation (ENSO) were investigated from 20 km to 110 km for the latitude range of 50°S-50°N. A four-component harmonic fit was used to remove the seasonal variation from the observed monthly temperature series. Multiple linear regression (MLR) was applied to analyze the linear trend, SC, QBO, and ENSO terms. In this study, the near-global mean temperature shows consistent cooling trends throughout the entire middle atmosphere, ranging from -0.28 to -0.97 K/decade. Additionally, it shows positive responses to the solar cycle, varying from -0.05 to 4.53 K/100sfu. A solar temperature response boundary between 50°S and 50°N is given, above which the atmospheric temperature is strongly affected by solar activity. The boundary penetrates deep below the stratopause to ~ 42 km over the tropical region and rises to higher altitudes with latitude. Temperature responses to the QBO and ENSO can be observed up to the upper mesosphere and lower thermosphere. In the equatorial region, 40%-70% of the total variance is explained by QBO signals in the stratosphere and 30%-50% is explained by the solar signal in the upper middle atmosphere. Our results, obtained from 18-year SABER observations, are expected to be an updated reliable estimation of the middle atmosphere temperature variability for the stratospheric ozone recovery period.


2021 ◽  
Author(s):  
Lian-Yi Zhang ◽  
Yan Du ◽  
Wenju Cai ◽  
Zesheng Chen ◽  
Tomoki Tozuka ◽  
...  

<p>This study identifies a new triggering mechanism of the Indian Ocean Dipole (IOD) from the Southern Hemisphere. This mechanism is independent from the El Niño/Southern Oscillation (ENSO) and tends to induce the IOD before its canonical peak season. The joint effects of this mechanism and ENSO may explain different lifetimes and strengths of the IOD. During its positive phase, development of sea surface temperature cold anomalies commences in the southern Indian Ocean, accompanied by an anomalous subtropical high system and anomalous southeasterly winds. The eastward movement of these anomalies enhances the monsoon off Sumatra-Java during May-August, leading to an early positive IOD onset. The pressure variability in the subtropical area is related with the Southern Annular Mode, suggesting a teleconnection between high-latitude and mid-latitude climate that can further affect the tropics. To include the subtropical signals may help model prediction of the IOD event.</p>


2013 ◽  
Vol 10 (10) ◽  
pp. 6677-6698 ◽  
Author(s):  
J. C. Currie ◽  
M. Lengaigne ◽  
J. Vialard ◽  
D. M. Kaplan ◽  
O. Aumont ◽  
...  

Abstract. The Indian Ocean Dipole (IOD) and the El Niño/Southern Oscillation (ENSO) are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries, ecosystems and carbon budgets.


2007 ◽  
Vol 20 (13) ◽  
pp. 2872-2880 ◽  
Author(s):  
Gary Meyers ◽  
Peter McIntosh ◽  
Lidia Pigot ◽  
Mike Pook

Abstract The Indian Ocean zonal dipole is a mode of variability in sea surface temperature that seriously affects the climate of many nations around the Indian Ocean rim, as well as the global climate system. It has been the subject of increasing research, and sometimes of scientific debate concerning its existence/nonexistence and dependence/independence on/from the El Niño–Southern Oscillation, since it was first clearly identified in Nature in 1999. Much of the debate occurred because people did not agree on what years are the El Niño or La Niña years, not to mention the newly defined years of the positive or negative dipole. A method that identifies when the positive or negative extrema of the El Niño–Southern Oscillation and Indian Ocean dipole occur is proposed, and this method is used to classify each year from 1876 to 1999. The method is statistical in nature, but has a strong basis on the oceanic physical mechanisms that control the variability of the near-equatorial Indo-Pacific basin. Early in the study it was found that some years could not be clearly classified due to strong decadal variation; these years also must be recognized, along with the reason for their ambiguity. The sensitivity of the classification of years is tested by calculating composite maps of the Indo-Pacific sea surface temperature anomaly and the probability of below median Australian rainfall for different categories of the El Niño–Indian Ocean relationship.


2018 ◽  
Vol 31 (10) ◽  
pp. 3875-3891 ◽  
Author(s):  
Emily Collier ◽  
Thomas Mölg ◽  
Tobias Sauter

Abstract Accurate knowledge of the impact of internal atmospheric variability is required for the detection and attribution of climate change and for interpreting glacier records. However, current knowledge of such impacts in high-mountain regions is largely based on statistical methods, as the observational data required for process-based assessments are often spatially or temporally deficient. Using a case study of Kilimanjaro, 12 years of convection-permitting atmospheric modeling are combined with an 8-yr observational record to evaluate the impact of climate oscillations on recent high-altitude atmospheric variability during the short rains (the secondary rain season in the region). The focus is on two modes that have a well-established relationship with precipitation during this season, El Niño–Southern Oscillation and the Indian Ocean zonal mode, and demonstrate their strong association with local and mesoscale conditions at Kilimanjaro. Both oscillations correlate positively with humidity fluctuations, but the association is strongest with the Indian Ocean zonal mode in the air layers near and above the glaciers because of changes in zonal circulation and moisture transport, emphasizing the importance of the moisture signal from this basin. However, the most anomalous conditions are found during co-occurring positive events because of the combined effects of the (i) extended positive sea surface temperature anomalies, (ii) enhanced atmospheric moisture capacity from higher tropospheric temperatures, (iii) most pronounced weakening of the subsiding branch of the Indian Ocean Walker circulation over East Africa, and (iv) stronger monsoonal moisture fluxes upstream from Kilimanjaro. This study lays the foundation for unraveling the contribution of climate modes to observed changes in Kilimanjaro’s glaciers.


2012 ◽  
Vol 25 (21) ◽  
pp. 7743-7763 ◽  
Author(s):  
A. Santoso ◽  
M. H. England ◽  
W. Cai

The impact of Indo-Pacific climate feedback on the dynamics of El Niño–Southern Oscillation (ENSO) is investigated using an ensemble set of Indian Ocean decoupling experiments (DCPL), utilizing a millennial integration of a coupled climate model. It is found that eliminating air–sea interactions over the Indian Ocean results in various degrees of ENSO amplification across DCPL simulations, with a shift in the underlying dynamics toward a more prominent thermocline mode. The DCPL experiments reveal that the net effect of the Indian Ocean in the control runs (CTRL) is a damping of ENSO. The extent of this damping appears to be negatively correlated to the coherence between ENSO and the Indian Ocean dipole (IOD). This type of relationship can arise from the long-lasting ENSO events that the model simulates, such that developing ENSO often coincides with Indian Ocean basin-wide mode (IOBM) anomalies during non-IOD years. As demonstrated via AGCM experiments, the IOBM enhances western Pacific wind anomalies that counteract the ENSO-enhancing winds farther east. In the recharge oscillator framework, this weakens the equatorial Pacific air–sea coupling that governs the ENSO thermocline feedback. Relative to the IOBM, the IOD is more conducive for ENSO growth. The net damping by the Indian Ocean in CTRL is thus dominated by the IOBM effect which is weaker with stronger ENSO–IOD coherence. The stronger ENSO thermocline mode in DCPL is consistent with the absence of any IOBM anomalies. This study supports the notion that the Indian Ocean should be viewed as an integral part of ENSO dynamics.


2020 ◽  
Vol 33 (17) ◽  
pp. 7233-7253 ◽  
Author(s):  
Yuanlong Li ◽  
Weiqing Han ◽  
Fan Wang ◽  
Lei Zhang ◽  
Jing Duan

AbstractMulti-time-scale variabilities of the Indian Ocean (IO) temperature over 0–700 m are revisited from the perspective of vertical structure. Analysis of historical data for 1955–2018 identifies two dominant types of vertical structures that account for respectively 70.5% and 21.2% of the total variance on interannual-to-interdecadal time scales with the linear trend and seasonal cycle removed. The leading type manifests as vertically coherent warming/cooling with the maximal amplitude at ~100 m and exhibits evident interdecadal variations. The second type shows a vertical dipole structure between the surface (0–60 m) and subsurface (60–400 m) layers and interannual-to-decadal fluctuations. Ocean model experiments were performed to gain insights into underlying processes. The vertically coherent, basinwide warming/cooling of the IO on an interdecadal time scale is caused by changes of the Indonesian Throughflow (ITF) controlled by Pacific climate and anomalous surface heat fluxes partly originating from external forcing. Enhanced changes in the subtropical southern IO arise from positive air–sea feedback among sea surface temperature, winds, turbulent heat flux, cloud cover, and shortwave radiation. Regarding dipole-type variability, the basinwide surface warming is induced by surface heat flux forcing, and the subsurface cooling occurs only in the eastern IO. The cooling in the southeast IO is generated by the weakened ITF, whereas that in the northeast IO is caused by equatorial easterly winds through upwelling oceanic waves. Both El Niño–Southern Oscillation (ENSO) and IO dipole (IOD) events are favorable for the generation of such vertical dipole anomalies.


Sign in / Sign up

Export Citation Format

Share Document