scholarly journals Variable External Forcing Obscures the Weak Relationship between the NAO and North Atlantic Multidecadal SST Variability

2019 ◽  
Vol 32 (13) ◽  
pp. 3847-3864 ◽  
Author(s):  
Jeremy M. Klavans ◽  
Amy C. Clement ◽  
Mark A. Cane

Abstract North Atlantic sea surface temperatures (SST) exhibit a lagged response to the North Atlantic Oscillation (NAO) in both models and observations, which has previously been attributed to changes in ocean heat transport. Here we examine the lagged relationship between the NAO and Atlantic multidecadal variability (AMV) in the context of the two other major components of the AMV: atmospheric noise and external forcing. In preindustrial control runs, we generally find that after accounting for spurious signals introduced by filtering, the SST response to the NAO is only statistically significant in the subpolar gyre. Further, the lagged SST response to the NAO is small in magnitude and offers a limited contribution to the AMV pattern, statistics, or predictability. When climate models include variable external forcing, the relationship between the NAO and AMV is obscured and becomes inconsistent. In these historically forced runs, knowledge of the prior NAO offers reduced predictability. The differences between the preindustrial and the historically forced ensembles suggest that we do not yet have enough observational data to surmise the true NAO–AMV relationship and add evidence that external forcing plays a substantial role in producing the AMV.

2020 ◽  
Vol 33 (14) ◽  
pp. 6025-6045
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park ◽  
Taewook Park

AbstractThe North Atlantic (NA) basin-averaged sea surface temperature (NASST) is often used as an index to study climate variability in the NA sector. However, there is still some debate on what drives it. Based on observations and climate models, an analysis of the different influences on the NASST index and its low-pass filtered version, the Atlantic multidecadal oscillation (AMO) index, is provided. In particular, the relationships of the two indices with some of its mechanistic drivers including the Atlantic meridional overturning circulation (AMOC) are investigated. In observations, the NASST index accounts for significant SST variability over the tropical and subpolar NA. The NASST index is shown to lump together SST variability originating from different mechanisms operating on different time scales. The AMO index emphasizes the subpolar SST variability. In the climate models, the SST-anomaly pattern associated with the NASST index is similar. The AMO index, however, only represents pronounced SST variability over the extratropical NA, and this variability is significantly linked to the AMOC. There is a sensitivity of this linkage to the cold NA SST bias observed in many climate models. Models suffering from a large cold bias exhibit a relatively weak linkage between the AMOC and AMO and vice versa. Finally, the basin-averaged SST in its unfiltered form, which has been used to question a strong influence of ocean dynamics on NA SST variability, mixes together multiple types of variability occurring on different time scales and therefore underemphasizes the role of ocean dynamics in the multidecadal variability of NA SSTs.


Author(s):  
Julia Nikolaevna Chizhova

The subject of this article is exmination of the influence of the Arctic air flow on the climatic conditions of the winter period in the center of the European territory of Russia (Moscow). In recent years, the question of the relationship between regional climatic conditions and such global circulation patterns as the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AK) has become increasingly important. Based on the data of long-term observations of temperature and precipitation, the relationship with the AK and NAO was considered. For the winter months of the period 2014-2018, the back trajectories of the movement of air masses were computed for each date of precipitation to identify the sources of precipitation. The amount of winter precipitation that forms the snow cover of Moscow has no connection with either the North Atlantic Oscillation or the Arctic Oscillation. The Moscow region is located at the intersection of the zones of influence of positive and negative phases of both cyclonic patterns (AK and NAO), which determine the weather in the Northern Hemisphere. For the winter months, a correlation between the surface air temperature and NAO (r = 0.72) and AK (r = 0.66) was established. Winter precipitation in the center of the European territory of Russiais mainly associated with the unloading of Atlantic air masses. Arctic air masses relatively rarely invade Moscow region and bring little precipitation (their contribution does not exceed 12% of the total winter precipitation).


2021 ◽  
Author(s):  
R. Eade ◽  
D. B. Stephenson ◽  
A. A. Scaife ◽  
D. M. Smith

AbstractClimate trends over multiple decades are important drivers of regional climate change that need to be considered for climate resilience. Of particular importance are extreme trends that society may not be expecting and is not well adapted to. This study investigates approaches to assess the likelihood of maximum moving window trends in historical records of climate indices by making use of simulations from climate models and stochastic time series models with short- and long-range dependence. These approaches are applied to assess the unusualness of the large positive trend that occurred in the North Atlantic Oscillation (NAO) index between the 1960s to 1990s. By considering stochastic models, we show that the chance of extreme trends is determined by the variance of the trend process, which generally increases when there is more serial correlation in the index series. We find that the Coupled Model Intercomparison Project (CMIP5 + 6) historical simulations have very rarely (around 1 in 200 chance) simulated maximum trends greater than the observed maximum. Consistent with this, the NAO indices simulated by CMIP models were found to resemble white noise, with almost no serial correlation, in contrast to the observed NAO which exhibits year-to-year correlation. Stochastic model best fits to the observed NAO suggest an unlikely chance (around 1 in 20) for there to be maximum 31-year NAO trends as large as the maximum observed since 1860. This suggests that current climate models do not fully represent important aspects of the mechanism for low frequency variability of the NAO.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 282 ◽  
Author(s):  
Nieves Bravo-Paredes ◽  
María Cruz Gallego ◽  
Fernando Domínguez-Castro ◽  
José Agustín García ◽  
José Manuel Vaquero

Rogation ceremonies are religious requests to God. Pro-pluvia rogations were celebrated during dry conditions to ask God for rain. In this work, we have recovered 37 pro-pluvia rogations from 14 documentary sources (e.g.,: ecclesiastical manuscripts, books, and different magazines and newspapers). All of the rogations were celebrated in Extremadura region (interior of southwest of Spain) during the period 1824–1931. Climate of Extremadura is strongly dominated by the North Atlantic Oscillation (NAO). Therefore, pro-pluvia rogations have been associated to the NAO index and the relationship between them has been analyzed. The most relevant results are found in the relationship between pro-pluvia rogations in month n and the positive values of the NAO index for months n-1 and n-2, being statistically significant at 95% confidence level. Thus, the results evidence that the rogation ceremonies of Extremadura are a good proxy for the NAO index.


2021 ◽  
Author(s):  
Sylvia Stinnett ◽  
Joshua Durkee ◽  
Joshua Gilliland ◽  
Victoria Murley ◽  
Alan Black ◽  
...  

<p>The North Atlantic Oscillation (NAO) is a high-frequency oscillation that has known influences on the climatology of weather patterns across the eastern United States. This study explores the relationship between the daily North Atlantic Oscillation index with observed high-wind events from 391 first-order weather stations across the eastern U.S. from 1973-2015. These events were determined following typical National Weather Service high-wind criteria: sustained winds of at least 18 m•s-1 for at least 1 hour or a wind gust of at least 26 m•s-1 for any duration. Since research literature shows high-wind events are often connected to parent mid-latitude cyclone tracks, and since the NAO has been shown to influence these storm tracks, it is hypothesized that changes in NAO phases are connected to spatial shifts and frequencies in high-wind observations. Initial results show a preferred southwesterly direction during each NAO phase. Variance in high-wind directions appears to increase (decrease) during negative (positive) NAO phases. Further, the greatest spatial difference in the mean center of high-wind observations was between positive and negative NAO phases. Overall, these preliminary findings indicate changes in high-wind observations may be linked to NAO phases.</p>


2020 ◽  
Author(s):  
Alessio Bellucci ◽  
Marianna Benassi ◽  
Silvio Gualdi ◽  
Annarita Mariotti

<p>Understanding processes and mechanisms which contribute to decadal climate variability is a crucial step in the development of a reliable prediction system, and as such it constitutes an important segment of the activities carried forward by the EU-funded Horizon 2020 EUCP project.</p><p>Sea surface temperature (SST) variability in the North Atlantic is known to be a key source of decadal predictability for the Euro-Atlantic sector. However, the nature of the observed variability is at the core of a long-standing debate.</p><p>In this work, we investigate the origins of North Atlantic SST variability, focusing on a specific event: the mid-20<sup>th</sup> century (1940-1975) “warm-to-cold” transition. This event is particularly interesting as it represents a well documented decadal-scale fluctuation of the observed climate record and can be used as a suitable test-bed to evaluate the relative skill of initialized versus non-initialized (historical) climate simulations.</p><p>Several mechanisms and processes have been taken into account to explain the cooling in the middle of 20th century, ranging from a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) to an increase in anthropogenic aerosol. Here the 1940-1975 transition is examined firstly in the NCAR Large Ensemble (NCAR-LENS), aiming to further explore the role of the possible drivers. Despite the lack of a realistic model state initialization, the NCAR-LENS shows some skill in capturing the North Atlantic SST transition, suggesting a non-negligible influence of the external forcing. Some lag between observations and model results is found, with the ensemble mean SST leading the onset of the observed transition by about ten years. This is consistent with previous studies, where some evidence was found of the driving role of anthropogenic aerosol and greenhouse gas forcing. In contrast, the simultaneous ocean dynamic response (AMOC) exhibits a large intra-member spread. This finding corroborates the hypothesis of a non-oceanic driver for the decadal-scale SST fluctuation. The same episode is then analysed in the NCAR Decadal Prediction Large Ensemble (NCAR-DPLE), which shares the same model code, configuration details, component resolutions, and external forcing datasets as for the non-initialized LENS ensemble. This allows a rigorous attribution of the relative roles of initialization, (mainly constraining the ocean-driven internal variability) and external forcing conditions on the overall skill in reproducing the Atlantic decadal variability, with clear implications for decadal predictability and predictions.</p><p> </p>


2020 ◽  
Author(s):  
Ralf Hand ◽  
Jürgen Bader ◽  
Daniela Matei ◽  
Rohit Ghosch ◽  
Johann Jungclaus

<p>The question, whether ocean dynamics are relevant for basin-scale North Atlantic decadal temperature variability is subject of ongoing discussions. Here, we analyze a set of simulations with a single climate model, consisting of a 2000-year pre-industrial control experiment, a 100-member historical ensemble, and a 100-member ensemble forced with an incremental CO2 increase by 1%/year. Compared to previous approaches, our setup offers the following advantages: First, the large ensemble size allows to robustly separate internally and externally forced variability and to robustly detect statistical links between different quantities. Second, the availability of different scenarios allows to investigate the role of the background state for drivers of the<br>variability. We find strong evidence that ocean dynamics, particularly ocean heat transport variations, form an important contribution to generate the Atlantic Multidecadal Variability (AMV) in the Max Planck Institute Earth System Model (MPI- ESM). Particularly the Northwest North Atlantic is substantially affected by ocean circulation for the historical and pre-industrial simulations. Anomalies of the Labrador Sea deep ocean density precede a change of the Atlantic Meridional Overturning Circulation (AMOC) and heat advection to the region south of Greenland.<br>Under strong CO2 forcing the AMV-SST regression pattern shows crucial changes: SST variability in the north western part of the North Atlantic is strongly reduced, so that the AMV pattern in this scenario is dominated by the low-latitude branch. We found a connection to changes in the deep water formation, that cause a strong reduction of the mean AMOC and its variability. Consequently, ocean heat transport convergence becomes less important for the SST variability south of Greenland.</p>


Sign in / Sign up

Export Citation Format

Share Document