scholarly journals Storm Track Response to Oceanic Eddies in Idealized Atmospheric Simulations

2018 ◽  
Vol 32 (2) ◽  
pp. 445-463 ◽  
Author(s):  
A. Foussard ◽  
G. Lapeyre ◽  
R. Plougonven

ABSTRACT Large-scale oceanic fronts, such as in western boundary currents, have been shown to play an important role in the dynamics of atmospheric storm tracks. Little is known about the influence of mesoscale oceanic eddies on the free troposphere, although their imprint on the atmospheric boundary layer is well documented. The present study investigates the response of the tropospheric storm track to the presence of sea surface temperature (SST) anomalies associated with an eddying ocean. Idealized experiments are carried out in a configuration of a zonally reentrant channel representing the midlatitudes. The SST field is composed of a large-scale zonally symmetric front to which are added mesoscale eddies localized close to the front. Numerical simulations show a robust signal of a poleward shift of the storm track and of the tropospheric eddy-driven jet when oceanic eddies are taken into account. This is accompanied by more intense air–sea fluxes and convective heating above oceanic eddies. Also, a mean heating of the troposphere occurs poleward of the oceanic eddying region, within the storm track. A heat budget analysis shows that it is caused by a stronger diabatic heating within storms associated with more water advected poleward. This additional heating affects the baroclinicity of the flow, which pushes the jet and the storm track poleward.

2016 ◽  
Vol 73 (2) ◽  
pp. 743-759 ◽  
Author(s):  
Yukari Sumi ◽  
Hirohiko Masunaga

Abstract A moist static energy (MSE) budget analysis is applied to quasi-2-day waves to examine the effects of thermodynamic processes on the wave propagation mechanism. The 2-day waves are defined as westward inertia–gravity (WIG) modes identified with filtered geostationary infrared measurements, and the thermodynamic parameters and MSE budget variables computed from reanalysis data are composited with respect to the WIG peaks. The composite horizontal and vertical MSE structures are overall as theoretically expected from WIG wave dynamics. A prominent horizontal MSE advection is found to exist, although the wave dynamics is mainly regulated by vertical advection. The vertical advection decreases MSE around the times of the convective peak, plausibly resulting from the first baroclinic mode associated with deep convection. Normalized gross moist stability (NGMS) is used to examine the thermodynamic processes involving the large-scale dynamics and convective heating. NGMS gradually decreases to zero before deep convection and reaches a maximum after the convection peak, where low (high) NGMS leads (lags) deep convection. The decrease in NGMS toward zero before the occurrence of active convection suggests an increasingly efficient conversion from convective heating to large-scale dynamics as the wave comes in, while the increase afterward signifies that this linkage swiftly dies out after the peak.


2008 ◽  
Vol 65 (9) ◽  
pp. 2842-2860 ◽  
Author(s):  
David James Brayshaw ◽  
Brian Hoskins ◽  
Michael Blackburn

Abstract The tropospheric response to midlatitude SST anomalies has been investigated through a series of aquaplanet simulations using a high-resolution version of the Hadley Centre atmosphere model (HadAM3) under perpetual equinox conditions. Model integrations show that increases in the midlatitude SST gradient generally lead to stronger storm tracks that are shifted slightly poleward, consistent with changes in the lower-tropospheric baroclinicity. The large-scale atmospheric response is, however, highly sensitive to the position of the SST gradient anomaly relative to that of the subtropical jet in the unperturbed atmosphere. In particular, when SST gradients are increased very close to the subtropical jet, then the Hadley cell and subtropical jet is strengthened while the storm track and eddy-driven jet are shifted equatorward. Conversely, if the subtropical SST gradients are reduced and the midlatitude gradients increased, then the storm track shows a strong poleward shift and a well-separated eddy-driven jet is produced. The sign of the SST anomaly is shown to play a secondary role in determining the overall tropospheric response. These findings are used to provide a new and consistent interpretation of some previous GCM studies concerning the atmospheric response to midlatitude SST anomalies.


Ocean Science ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 379-387 ◽  
Author(s):  
J. Mignot ◽  
C. de Boyer Montégut ◽  
M. Tomczak

Abstract. Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL) thickness first proposed by de Boyer Montégut et al. (2007). In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents) and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere.


2013 ◽  
Vol 26 (24) ◽  
pp. 9923-9930 ◽  
Author(s):  
Cheikh Mbengue ◽  
Tapio Schneider

Abstract Earth’s storm tracks are instrumental for transporting heat, momentum, and moisture and thus strongly influence the surface climate. Climate models, supported by a growing body of observational data, have demonstrated that storm tracks shift poleward as the climate warms. But the dynamical mechanisms responsible for this shift remain unclear. To isolate what portion of the storm track shift may be accounted for by large-scale dry dynamics alone, disregarding the latent heat released in phase changes of water, this study investigates the storm track shift under various kinds of climate change in an idealized dry general circulation model (GCM) with an adjustable but constant convective stability. It is found that increasing the mean surface temperature or the convective stability leads to poleward shifts of storm tracks, even if the convective stability is increased only in a narrow band around the equator. Under warming and convective stability changes roughly corresponding to a doubling of CO2 concentrations from a present-day Earthlike climate, storm tracks shift about 0.8° poleward, somewhat less than but in qualitative agreement with studies using moist GCMs. About 63% (0.5°) of the poleward shift is shown to be caused by tropical convective stability variations. This demonstrates that tropical processes alone (the increased dry static stability of a warmer moist adiabat) can account for part of the poleward shift of storm tracks under global warming. This poleward shift generally occurs in tandem with a poleward expansion of the Hadley circulation; however, the Hadley circulation expansion does not always parallel the storm track shift.


2020 ◽  
Vol 33 (12) ◽  
pp. 5337-5354 ◽  
Author(s):  
Zeya Li ◽  
Neil J. Holbrook ◽  
Xuebin Zhang ◽  
Eric C. J. Oliver ◽  
Eva A. Cougnon

AbstractRecent marine heatwave (MHW) events in the Tasman Sea have had dramatic impacts on the ecosystems, fisheries, and aquaculture off Tasmania’s east coast. However, our understanding of the large-scale drivers (forcing) and potential predictability of MHW events in this region off southeast Australia is still in its infancy. Here, we investigate the role of oceanic Rossby waves forced in the interior South Pacific on observed MHW occurrences off southeast Australia from 1994 to 2016, including the extreme 2015/16 MHW event. First, we used an upper-ocean heat budget analysis to show that 51% of these historical Tasman Sea MHWs were primarily due to increased East Australian Current (EAC) Extension poleward transports through the region. Second, we used lagged correlation analysis to empirically connect the EAC Extension intensification to incoming westward-propagating sea surface height (SSH) anomalies from the interior South Pacific. Third, we dynamically analyzed these SSH anomalies using simple process-based baroclinic and barotropic Rossby wave models forced by wind stress curl changes across the South Pacific. Finally, we show that associated monthly SSH changes around New Zealand may be a useful index of western Tasman Sea MHW predictability, with a lead time of 2–3 years. In conclusion, our findings demonstrate that there is potential predictability of advection-dominated MHW event likelihoods in the EAC Extension region up to several years in advance, due to the deterministic contribution from baroclinic and barotropic Rossby waves in modulating the EAC Extension transports.


2016 ◽  
Vol 121 (7) ◽  
pp. 4928-4945 ◽  
Author(s):  
Hu Yang ◽  
Gerrit Lohmann ◽  
Wei Wei ◽  
Mihai Dima ◽  
Monica Ionita ◽  
...  

2020 ◽  
Author(s):  
Fumi Hayashi

<p>Western Boundary Currents (WBC), such as the Gulf Stream, leave a strong imprint on the ocean-atmosphere boundary in the form of strong gradients and high variability of Sea Surface Temperature (SST). Recent studies have shown that midlatitude oceanic fronts have an influence throughout the depth of the troposphere by means of synoptic systems such as weather fronts. An understanding of how the midlatitude ocean influences the synoptic system is crucial for better climate projection, however, this has been challenging. For example, in model simulations the sensitivity of the atmosphere to SST anomalies are dependent on its resolution, with low resolution models unable to capture the air-sea interactions occurring over warm sectors of midlatitude cyclones, possibly leading to underestimations of the oceanic influence on the atmosphere. A novel modelling technique is developed in which an interactive “mask” is used to systematically isolate and study the air-sea interaction over different synoptic regimes (warm and cold sector). Here, simulations using an idealised aqua-planet atmospheric general circulation model (AGCM) are used to study the atmospheric response to a tightening of SST gradient (comparable to that of the Gulf Stream) over the cold sector (“cold path”) and the warm sector (“warm path”) separately. Same experiments will also be performed on models with higher resolution to investigate the difference in atmospheric response between the high and low resolution models and what physical processes are responsible for such change in response.</p>


2017 ◽  
Author(s):  
Davi Mignac ◽  
David Ferreira ◽  
Keith Haines

Abstract. The South Atlantic meridional transports are evaluated for four state-of-the-art global Ocean Reanalyses (ORAs) and two Free-Running Models (FRMs) in the period 1997–2010. All products employ the Nucleus for European Modelling of the Oceans model, and the ORAs share very similar configurations. The ORA basin interior transports are consistently modified relative to the FRMs, especially in the Argo period, with an improved representation of the south equatorial currents. The ORAs also exhibit systematically higher meridional transports than the FRMs, in closer agreement with large-scale observational estimates at 35° S and western boundary measurements at 11° S. However, the transport impacts by data assimilation still greatly vary between the ORAs, leading to differences up to ~ 8 Sv and 0.4 PW in the South Atlantic Meridional Overturning Circulation and the Meridional Heat Transports (MHTs), respectively. Large inter-product discrepancies arise in the ORA western boundary currents at both upper and deep levels explaining up to ~ 85 % of the inter-product differences in their total MHTs, and meridional velocity differences, rather than temperatures differences, drive ~ 83 % of this spread. Further analysis shows that only very confined temperature differences right against the western boundary geostrophically explain the large boundary current velocity differences. These findings suggest that the current data assimilation schemes, even with Argo data, can consistently constrain the basin interior circulation in the ORAs, but not the overturning transport component dominated by the narrow western boundary currents as in the South Atlantic.


2006 ◽  
Vol 19 (7) ◽  
pp. 1354-1360 ◽  
Author(s):  
Oleg A. Saenko

Abstract Results from eight ocean–atmosphere general circulation models are used to evaluate the influence of the projected changes in the oceanic stratification on the first baroclinic Rossby radius of deformation in the ocean, associated with atmospheric CO2 increase. For each of the models, an oceanic state corresponding to the A1B stabilization experiment (with atmospheric CO2 concentration of 720 ppm) is compared to a state corresponding to the preindustrial control experiment (with atmospheric CO2 concentration of 280 ppm). In all of the models, the first baroclinic Rossby radius increases with increasing oceanic stratification in the warmer climate. There is, however, a considerable range among the models in the magnitude of the increase. At the latitudes of intense eddy activity associated with instability of western boundary currents (around 35°–40°), the increase reaches 4 km on average, or about 15% of the local baroclinic Rossby radius. Some of the models predict an increase of the baroclinic Rossby radius by more than 20% at these latitudes under the applied forcing. It is therefore suggested that in a plausible future warmer climate, the characteristic length scale of mesoscale eddies, as well as boundary currents and fronts, may increase. In addition, since the speed of long baroclinic Rossby waves is proportional to the squared baroclinic Rossby radius of deformation, the results suggest that the time scale for large-scale dynamical oceanic adjustment may decrease in the warmer climate, thereby increasing the frequency of long-term climate variability where the oceanic Rossby wave dynamics set the dominant period. Finally, the speed of equatorial Kelvin waves and Rossby waves, carrying signals along the equator, including those related to ENSO, is projected to increase.


2016 ◽  
Vol 795 ◽  
pp. 423-442 ◽  
Author(s):  
I. V. Shevchenko ◽  
P. S. Berloff ◽  
D. Guerrero-López ◽  
J. E. Roman

This paper studies the large-scale low-frequency variability of the wind-driven midlatitude ocean gyres and their western boundary currents, such as the Gulf Stream or Kuroshio, simulated with the eddy-resolving quasi-geostrophic model. We applied empirical orthogonal functions analysis to turbulent flow solutions and statistically extracted robust and significant large-scale decadal variability modes concentrated around the eastward jet extension of the western boundary currents. In order to interpret these statistical modes dynamically, we linearized the governing quasi-geostrophic equations around the time-mean circulation and solved for the corresponding full set of linear eigenmodes with their eigenfrequencies. We then projected the extracted decadal variability on the eigenmodes and found that this variability is a multimodal coherent pattern phenomenon rather than a single mode or a combination of several modes as in the flow regimes preceding developed turbulence.


Sign in / Sign up

Export Citation Format

Share Document