A novel masking technique to investigate atmosphere-ocean interaction over Western Boundary Currents

Author(s):  
Fumi Hayashi

<p>Western Boundary Currents (WBC), such as the Gulf Stream, leave a strong imprint on the ocean-atmosphere boundary in the form of strong gradients and high variability of Sea Surface Temperature (SST). Recent studies have shown that midlatitude oceanic fronts have an influence throughout the depth of the troposphere by means of synoptic systems such as weather fronts. An understanding of how the midlatitude ocean influences the synoptic system is crucial for better climate projection, however, this has been challenging. For example, in model simulations the sensitivity of the atmosphere to SST anomalies are dependent on its resolution, with low resolution models unable to capture the air-sea interactions occurring over warm sectors of midlatitude cyclones, possibly leading to underestimations of the oceanic influence on the atmosphere. A novel modelling technique is developed in which an interactive “mask” is used to systematically isolate and study the air-sea interaction over different synoptic regimes (warm and cold sector). Here, simulations using an idealised aqua-planet atmospheric general circulation model (AGCM) are used to study the atmospheric response to a tightening of SST gradient (comparable to that of the Gulf Stream) over the cold sector (“cold path”) and the warm sector (“warm path”) separately. Same experiments will also be performed on models with higher resolution to investigate the difference in atmospheric response between the high and low resolution models and what physical processes are responsible for such change in response.</p>

2020 ◽  
Author(s):  
Robert E. Todd

<p>Subtropical western boundary currents play a key role in ocean energy storage and transport and are characterized by elevated mean and eddy kinetic energy. Due to a lack of spatially broad subsurface observations of velocity, most studies of kinetic energy in western boundary currents have relied on satellite-based estimates of surface geostrophic velocity. Since 2015, Spray autonomous underwater gliders have completed more than 175 crossings of the Gulf Stream distributed over more than 1,500 km in along-stream extent between between Miami, FL (~25°N) and Cape Cod, MA (~40°N). The observations include roughly 14,000 absolute ocean velocity profiles in the upper 1000 m. Novel three-dimensional estimates of mean and eddy kinetic energy are constructed along the western margin of the North Atlantic at 10-m vertical resolution. The horizontal and vertical distributions of mean and eddy kinetic energy are analyzed in light of existing independent estimates and theoretical expectations. Observation-based estimates of mean and eddy-kinetic energy such as these serve as important metrics for validation of global circulation models that must adequately represent western boundary currents.</p>


Here, I employed the shelf properties and sizes of different basins and introduced the Sun-Moon gravitation into the dynamical equations to dynamically explain the differences existing in the Gulf Stream and the Kuroshio systems. In addition to the classic western-boundary intensification of the western boundary currents that fails to explain why the differences in currents and ENSO significance exist among different oceans, shelf properties and sizes of different basins may produce another westernboundary intensification of the western boundary currents under the Sun-Moon gravitation.


2011 ◽  
Vol 41 (11) ◽  
pp. 2063-2079 ◽  
Author(s):  
Stefano Pierini ◽  
Pierpaolo Falco ◽  
Giovanni Zambardino ◽  
Thomas A. McClimans ◽  
Ingrid Ellingsen

Abstract Various dynamical aspects of nonlinear western boundary currents (WBCs) have been investigated experimentally through physical modeling in a 5-m-diameter rotating basin. The motion of a piston with a velocity up that can be as low as up = 0.5 mm s−1 induces a horizontally unsheared current of homogeneous water that, flowing over a topographic beta slope, experiences westward intensification. First, the character of WBCs for various degrees of nonlinearity is investigated. By varying up, flows ranging from the highly nonlinear inertial Charney regime down to a weakly nonlinear regime can be simulated. In the first case, the dependence of zonal length scales on up is found to be in agreement with Charney’s theory; for weaker flows, a markedly different functional dependence emerges describing the initial transition toward the linear, viscous case. This provides an unprecedented coverage of nonlinear WBC dependence on an amplitude parameter in terms of experimental data. WBC separation from a wedge-shaped continent past a cape (simulating Cape Hatteras) due to inertial overshooting is then analyzed. By increasing current speed, a critical behavior is identified according to which a very small change of up marks the transition from a WBC that follows the coast past the cape to a WBC (nearly dynamically similar to a full-scale Gulf Stream) that separates from the cape without any substantial deflection, as with the Gulf Stream Extension. The important effect of the deflection angle of the continent is analyzed as well. Finally, the qualitative effect of a sloping sidewall along a straight coast is considered: the deflection of the flow away from the western wall due to the tendency to preserve potential vorticity clearly emerges.


2017 ◽  
Vol 47 (2) ◽  
pp. 353-373 ◽  
Author(s):  
Joseph Schoonover ◽  
William K. Dewar ◽  
Nicolas Wienders ◽  
Bruno Deremble

AbstractRobust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. In this paper, the authors investigate the impact of the deep western boundary current (DWBC), coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the Massachusetts Institute of Technology General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity of the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. It is shown that the Gulf Stream separation and mean surface position are most sensitive to the continental slope steepening, consistent with a theory proposed by Melvin Stern in 1998. In contrast, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. This study concludes adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.


2021 ◽  
Author(s):  
Adrian New ◽  
David Smeed ◽  
Arnaud Czaja ◽  
Adam Blaker ◽  
Jenny Mecking ◽  
...  

<p>Labrador Slope Water (LSLW) is found in the Slope Sea on the US-Canadian eastern shelf-slope as a relatively fresh and cool water mass, lying between the upper layer water masses and those carried by the Deep Western Boundary Current. It originates from the Labrador Current and has previously only been reported in the Eastern Slope Sea (east of 66°W). We here use the EN4 gridded database and the Line W hydrographic observations to show for the first time that the LSLW also penetrates into the Western Slope Sea, bringing it into close contact with the Gulf Stream. We also show that the LSLW spreads across the entire Slope Sea north of the Gulf Stream, and is both fresher and thicker when the Atlantic Meridional Overturning Circulation (AMOC) is high at the RAPID array at 26°N. The fresher, thicker LSLW is likely to contribute an additional 1.5 Sv of Gulf Stream transport. The spreading of the LSLW is also investigated in a high-resolution ocean general circulation model (NEMO), and is found to occur both as a western boundary current and through the extrusion of filaments following interaction with Gulf Stream meanders and eddies. The mechanism results in downward vertical motion as the filaments are entrained into the Gulf Stream. We conclude that the LSLW (rather than the deeper Labrador Sea Water) provides the intermediate depth water masses which maintain the density contrast here which partly drives the Gulf Stream, and that the transport of the LSLW from the Labrador shelf-slope offers a potential new mechanism for decadal variability in the Atlantic climate system, through connecting high latitude changes in the Subarctic with subsequent variability in the Gulf Stream and AMOC.</p>


2020 ◽  
Vol 7 ◽  
Author(s):  
Marcos Fontela ◽  
Fiz F. Pérez ◽  
Herlé Mercier ◽  
Pascale Lherminier

In the North Atlantic, there are two main western boundary currents related to the Atlantic Meridional Overturning Circulation (AMOC): the Gulf Stream flowing northward and the Deep Western Boundary Current (DWBC) flowing southward. Here we analyze data from the OVIDE section (GO-SHIP A25 Portugal-Greenland 40–60°N) that crosses the DWBC and the northward extension of the Gulf Stream, the North Atlantic Current. We show that North Atlantic western boundary currents play a key role in the transport of dissolved organic matter, specifically dissolved organic carbon (DOC). Revisited transports and budgets of DOC with new available data identify the eastern Subpolar North Atlantic (eSPNA) as an important source of locally produced organic matter for the North Atlantic and a key region in the supply of bioavailable DOC to the deep ocean. The East Greenland Current, and its upstream source the East Reykjanes Ridge Current on the eastern flank of the mid-Atlantic ridge, are export pathways of bioavailable DOC toward subtropical latitudes. The fast overturning and subsequent remineralization of DOC produced in the autotrophic eSPNA explains up to 38% of the total oxygen consumption in the deep North Atlantic between the OVIDE section and 24°N. Carbon budgets that do not take into account this organic remineralization process overestimates the natural uptake of carbon dioxide (CO2) from the atmosphere by one third. The inclusion of DOC transports in regional carbon budgets reconciles the estimates of CO2 uptake in the North Atlantic between model and observations.


2016 ◽  
Vol 29 (24) ◽  
pp. 9125-9139 ◽  
Author(s):  
Adeline Bichet ◽  
Paul J. Kushner ◽  
Lawrence Mudryk

Abstract Better constraining the continental climate response to anthropogenic forcing is essential to improve climate projections. In this study, pattern scaling is used to extract, from observations, the patterned response of sea surface temperature (SST) and sea ice concentration (SICE) to anthropogenically dominated long-term global warming. The SST response pattern includes a warming of the tropical Indian Ocean, the high northern latitudes, and the western boundary currents. The SICE pattern shows seasonal variations of the main locations of sea ice loss. These SST–SICE response patterns are used to drive an ensemble of an atmospheric general circulation model, the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), over the period 1980–2010 along with a standard AMIP ensemble using observed SST—SICE. The simulations enable attribution of a variety of observed trends of continental climate to global warming. On the one hand, the warming trends observed in all seasons across the entire Northern Hemisphere extratropics result from global warming, as does the snow loss observed over the northern midlatitudes and northwestern Eurasia. On the other hand, 1980–2010 precipitation trends observed in winter over North America and in summer over Africa result from the recent decreasing phase of the Pacific decadal oscillation and the recent increasing phase of the Atlantic multidecadal oscillation, respectively, which are not part of the global warming signal. The method holds promise for near-term decadal climate prediction but as currently framed cannot distinguish regional signals associated with oceanic internal variability from aerosol forcing and other sources of short-term forcing.


2008 ◽  
Vol 38 (10) ◽  
pp. 2294-2307 ◽  
Author(s):  
Hristina G. Hristova ◽  
Joseph Pedlosky ◽  
Michael A. Spall

Abstract A linear stability analysis of a meridional boundary current on the beta plane is presented. The boundary current is idealized as a constant-speed meridional jet adjacent to a semi-infinite motionless far field. The far-field region can be situated either on the eastern or the western side of the jet, representing a western or an eastern boundary current, respectively. It is found that when unstable, the meridional boundary current generates temporally growing propagating waves that transport energy away from the locally unstable region toward the neutral far field. This is the so-called radiating instability and is found in both barotropic and two-layer baroclinic configurations. A second but important conclusion concerns the differences in the stability properties of eastern and western boundary currents. An eastern boundary current supports a greater number of radiating modes over a wider range of meridional wavenumbers. It generates waves with amplitude envelopes that decay slowly with distance from the current. The radiating waves tend to have an asymmetrical horizontal structure—they are much longer in the zonal direction than in the meridional, a consequence of which is that unstable eastern boundary currents, unlike western boundary currents, have the potential to act as a source of zonal jets for the interior of the ocean.


Sign in / Sign up

Export Citation Format

Share Document