Local Atmosphere–Ocean Predictability: Dynamical Origins, Lead Times, and Seasonality

2019 ◽  
Vol 32 (21) ◽  
pp. 7507-7519 ◽  
Author(s):  
Eviatar Bach ◽  
Safa Motesharrei ◽  
Eugenia Kalnay ◽  
Alfredo Ruiz-Barradas

Abstract Due to the physical coupling between atmosphere and ocean, information about the ocean helps to better predict the future of the atmosphere, and in turn, information about the atmosphere helps to better predict the ocean. Here, we investigate the spatial and temporal nature of this predictability: where, for how long, and at what frequencies does the ocean significantly improve prediction of the atmosphere, and vice versa? We apply Granger causality, a statistical test to measure whether a variable improves prediction of another, to local time series of sea surface temperature (SST) and low-level atmospheric variables. We calculate the detailed spatial structure of the atmosphere-to-ocean and ocean-to-atmosphere predictability. We find that the atmosphere improves prediction of the ocean most in the extratropics, especially in regions of large SST gradients. This atmosphere-to-ocean predictability is weaker but longer-lived in the tropics, where it can last for several months in some regions. On the other hand, the ocean improves prediction of the atmosphere most significantly in the tropics, where this predictability lasts for months to over a year. However, we find a robust signature of the ocean on the atmosphere almost everywhere in the extratropics, an influence that has been difficult to demonstrate with model studies. We find that both the atmosphere-to-ocean and ocean-to-atmosphere predictability are maximal at low frequencies, and both are larger in the summer hemisphere. The patterns we observe generally agree with dynamical understanding and the results of the Kalnay dynamical rule, which diagnoses the direction of forcing between the atmosphere and ocean by considering the local phase relationship between simultaneous sea surface temperature and vorticity anomaly signals. We discuss applications to coupled data assimilation.

2020 ◽  
Author(s):  
Tongwen Wu ◽  
Rucong Yu ◽  
Yixiong Lu ◽  
Weihua Jie ◽  
Yongjie Fang ◽  
...  

Abstract. BCC-CSM2-HR is a high-resolution version of the Beijing Climate Center (BCC) Climate System Model. Its development is on the basis of the medium-resolution version BCC-CSM2-MR which is the baseline for BCC participation to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This study documents the high-resolution model, highlights major improvements in the representation of atmospheric dynamic core and physical processes. BCC-CSM2-HR is evaluated for present-day climate simulations from 1971 to 2000, which are performed under CMIP6-prescribed historical forcing, in comparison with its previous medium-resolution version BCC-CSM2-MR. We focus on basic atmospheric mean states over the globe and variabilities in the tropics including the tropic cyclones (TCs), the El Niño–Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and the quasi-biennial oscillation (QBO) in the stratosphere. It is shown that BCC-CSM2-HR keeps well the global energy balance and can realistically reproduce main patterns of atmosphere temperature and wind, precipitation, land surface air temperature and sea surface temperature. It also improves in the spatial patterns of sea ice and associated seasonal variations in both hemispheres. The bias of double intertropical convergence zone (ITCZ), obvious in BCC-CSM2-MR, is almost disappeared in BCC-CSM2-HR. TC activity in the tropics is increased with resolution enhanced. The cycle of ENSO, the eastward propagative feature and convection intensity of MJO, the downward propagation of QBO in BCC-CSM2-HR are all in a better agreement with observation than their counterparts in BCC-CSM2-MR. We also note some weakness in BCC-CSM2-HR, such as the excessive cloudiness in the eastern basin of the tropical Pacific with cold Sea Surface Temperature (SST) biases and the insufficient number of tropical cyclones in the North Atlantic.


2019 ◽  
Vol 34 (6) ◽  
pp. 1965-1977 ◽  
Author(s):  
Shouwen Zhang ◽  
Hua Jiang ◽  
Hui Wang

Abstract Based on historical forecasts of four individual forecasting systems, we conducted multimodel ensembles (MME) to predict the sea surface temperature anomaly (SSTA) variability and assessed these methods from a deterministic and probabilistic point of view. To investigate the advantages and drawbacks of different deterministic MME methods, we used simple averaged MME with equal weighs (SCM) and the stepwise pattern projection method (SPPM). We measured the probabilistic forecast accuracy by Brier skill score (BSS) combined with its two components: reliability (Brel) and resolution (Bres). The results indicated that SCM showed a high predictability in the tropical Pacific Ocean, with a correlation exceeding 0.8 with a 6-month lead time. In general, the SCM outperformed the SPPM in the tropics, while the SPPM tend to show some positive effect on the correction when at long lead times. Corrections occurred for the spring predictability barrier of ENSO, in particular for improvements when the correlation was low or the RMSE was large using the SCM method. These qualitative results are not susceptible to the selection of the hindcast periods, it is as a rule rather by chance of these individual systems. Performance of our probabilistic MME was better than the Climate Forecast System version2 (CFSv2) forecasts in forecasting COLD, NEUTRAL, and WARM SSTA categories for most regions, mainly due to the contribution of Brel, indicating more adequate ensemble construction strategies of the MME system superior to the CFSv2.


2014 ◽  
Vol 27 (22) ◽  
pp. 8413-8421 ◽  
Author(s):  
Lei Zhang ◽  
Tim Li

Abstract How sea surface temperature (SST) changes under global warming is critical for future climate projection because SST change affects atmospheric circulation and rainfall. Robust features derived from 17 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) include a much greater warming in high latitudes than in the tropics, an El Niño–like warming over the tropical Pacific and Atlantic, and a dipole pattern in the Indian Ocean. However, the physical mechanism responsible for formation of such warming patterns remains open. A simple theoretical model is constructed to reveal the cause of the future warming patterns. The result shows that a much greater polar, rather than tropical, warming depends primarily on present-day mean SST and surface latent heat flux fields, and atmospheric longwave radiation feedback associated with cloud change further enhances this warming contrast. In the tropics, an El Niño–like warming over the Pacific and Atlantic arises from a similar process, while cloud feedback resulting from different cloud regimes between east and west ocean basins also plays a role. A dipole warming over the equatorial Indian Ocean is a response to weakened Walker circulation in the tropical Pacific.


2008 ◽  
Vol 21 (20) ◽  
pp. 5304-5317 ◽  
Author(s):  
Hye-Mi Kim ◽  
Carlos D. Hoyos ◽  
Peter J. Webster ◽  
In-Sik Kang

Abstract The influence of sea surface temperature (SST) on the simulation and predictability of the Madden–Julian oscillation (MJO) is examined using the Seoul National University atmospheric general circulation model (SNU AGCM). Forecast skill was examined using serial climate simulations spanning eight different winter seasons with 30-day forecasts commencing every 5 days, giving a total of 184 thirty-day simulations. The serial runs were repeated using prescribing observed SST with monthly, weekly, and daily temporal resolutions. The mean SST was the same for all cases so that differences between experiments result from the different temporal resolutions of the SST boundary forcing. It is shown that high temporal SST frequency acts to improve 1) the MJO activity of 200-hPa velocity potential field over the entire Asian monsoon region at all lead times; 2) the percentage of filtered variance of the two leading EOF modes that explain the eastward propagation of MJO; 3) the power of the wavenumber 1 eastward propagating mode; and 4) the forecast skill of MJO, maintaining it for longer periods. However, the MJO phase relationship between MJO convection and SST, as is often the case with many atmosphere-only models, although well simulated at the beginning of forecast period becomes distorted rapidly as the forecast lead time increases, even with the daily SST forcing case. Comparison of AGCM simulations with coupled GCM (CGCM) integrations shows that ocean–atmosphere coupling improves considerably the phase relationship between SST and convection. The CGCM results reinforce that the MJO is a coupled phenomenon and suggest strongly the need of the ocean–atmosphere coupled processes to extend predictability.


2017 ◽  
Vol 30 (9) ◽  
pp. 3303-3323 ◽  
Author(s):  
Cristian Martinez-Villalobos ◽  
Daniel J. Vimont

A theoretical framework is developed for understanding the transient growth and propagation characteristics of thermodynamically coupled, meridional mode–like structures in the tropics. The model consists of a Gill–Matsuno-type steady atmosphere under the long-wave approximation coupled via a wind–evaporation–sea surface temperature (WES) feedback to a “slab” ocean model. When projected onto meridional basis functions for the atmosphere the system simplifies to a nonnormal set of equations that describes the evolution of individual sea surface temperature (SST) modes, with clean separation between equatorially symmetric and antisymmetric modes. The following major findings result from analysis of the system: 1) a transient growth process exists whereby specific SST modes propagate toward lower-order modes at the expense of the higher-order modes; 2) the same dynamical mechanisms govern the evolution of symmetric and antisymmetric SST modes except for the lowest-order wavenumber, where for symmetric structures the atmospheric Kelvin wave plays a critically different role in enhancing decay; and 3) the WES feedback is positive for all modes (with a maximum for the most equatorially confined antisymmetric structure) except for the most equatorially confined symmetric mode where the Kelvin wave generates a negative WES feedback. Taken together, these findings explain why equatorially antisymmetric “dipole”-like structures may dominate thermodynamically coupled ocean–atmosphere variability in the tropics. The role of nonnormality and the role of realistic mean states in meridional mode variability are discussed.


2012 ◽  
Vol 9 (4) ◽  
pp. 2535-2559
Author(s):  
E. de Boisséson ◽  
M. A. Balmaseda ◽  
F. Vitart ◽  
K. Mogensen

Abstract. This paper explores the sensitivity of the prediction of Madden Julian Oscillation (MJO) events to different aspects of the sea surface temperature (SST) in the European Centre for Medium-range Weather Forecasts (ECMWF) model. The impact of temporal resolution of SST on the MJO is first evaluated via a set of monthly hindcast experiments. The experiments are conducted with an atmosphere forced by persisted SST anomalies, monthly and weekly SSTs. Skill scores are clearly degraded when weekly SSTs are replaced by monthly values or persisted anomalies. The new high resolution OSTIA SST daily reanalysis would in principle allow to establish the impact of daily versus weekly SST values on the MJO prediction. It is found however that OSTIA SSTs provide lower skill scores than the weekly product. Further experiments show that this loss of skill cannot be attributed to either the mean state or the daily frequency of OSTIA SSTs. Additional diagnostics show that the phase relationship between OSTIA SSTs and tropical convection is not optimal with repspect to observations. Such result suggests that capturing the correct SST-convection phase relationship is a major challenge for the MJO predictions.


2010 ◽  
Vol 23 (4) ◽  
pp. 966-986 ◽  
Author(s):  
Shang-Ping Xie ◽  
Clara Deser ◽  
Gabriel A. Vecchi ◽  
Jian Ma ◽  
Haiyan Teng ◽  
...  

Abstract Spatial variations in sea surface temperature (SST) and rainfall changes over the tropics are investigated based on ensemble simulations for the first half of the twenty-first century under the greenhouse gas (GHG) emission scenario A1B with coupled ocean–atmosphere general circulation models of the Geophysical Fluid Dynamics Laboratory (GFDL) and National Center for Atmospheric Research (NCAR). Despite a GHG increase that is nearly uniform in space, pronounced patterns emerge in both SST and precipitation. Regional differences in SST warming can be as large as the tropical-mean warming. Specifically, the tropical Pacific warming features a conspicuous maximum along the equator and a minimum in the southeast subtropics. The former is associated with westerly wind anomalies whereas the latter is linked to intensified southeast trade winds, suggestive of wind–evaporation–SST feedback. There is a tendency for a greater warming in the northern subtropics than in the southern subtropics in accordance with asymmetries in trade wind changes. Over the equatorial Indian Ocean, surface wind anomalies are easterly, the thermocline shoals, and the warming is reduced in the east, indicative of Bjerknes feedback. In the midlatitudes, ocean circulation changes generate narrow banded structures in SST warming. The warming is negatively correlated with wind speed change over the tropics and positively correlated with ocean heat transport change in the northern extratropics. A diagnostic method based on the ocean mixed layer heat budget is developed to investigate mechanisms for SST pattern formation. Tropical precipitation changes are positively correlated with spatial deviations of SST warming from the tropical mean. In particular, the equatorial maximum in SST warming over the Pacific anchors a band of pronounced rainfall increase. The gross moist instability follows closely relative SST change as equatorial wave adjustments flatten upper-tropospheric warming. The comparison with atmospheric simulations in response to a spatially uniform SST warming illustrates the importance of SST patterns for rainfall change, an effect overlooked in current discussion of precipitation response to global warming. Implications for the global and regional response of tropical cyclones are discussed.


Sign in / Sign up

Export Citation Format

Share Document