scholarly journals Mid-Latitude Mesospheric Zonal Wave 1 and Wave 2 in Winter 2020–2021

Author(s):  
Yu Shi ◽  
Oleksandr Evtushevsky ◽  
Valerii Shulga ◽  
Gennadi Milinevsky ◽  
Andrew Klekociuk ◽  
...  

Planetary waves in the mesosphere are studied using observational data and models to establish their origin, as there are indications of their generation independently of waves in the stratosphere. The quantitative relationships between zonal wave numbers m = 1 (wave 1) and m = 2 (wave 2) were studied with a focus on the mid-latitude mesosphere at 50N latitude. Aura Microwave Limb Sounder measurements were used to estimate wave amplitudes in geopotential height during the 2020–2021 winter major sudden stratospheric warming. The moving correlation between the wave amplitudes shows that, in comparison with the anticorrelation in the stratosphere, wave 2 positively correlates with wave 1 and propagates ahead of it in the mesosphere. A positive correlation r = 0.5–0.6, statistically significant at the 95% confidence level, is observed at 1–5-day time lag and in the 75–91 km altitude range, which is the upper mesosphere–mesopause region. Wavelet analysis shows a clear 8-day period in waves 1 and 2 in the mesosphere at 0.01 hPa (80 km), while in the stratosphere–lower mesosphere the period is twice as long at 16-days; this is statistically significant only in wave 2. Possible sources of mesospheric planetary waves are discussed.

2021 ◽  
Vol 13 (18) ◽  
pp. 3749
Author(s):  
Yu Shi ◽  
Oleksandr Evtushevsky ◽  
Valerii Shulga ◽  
Gennadi Milinevsky ◽  
Andrew Klekociuk ◽  
...  

Planetary waves in the mesosphere are studied using observational data and models to establish their origin, as there are indications of their generation independently of waves in the stratosphere. The quantitative relationships between zonal wave 1 and wave 2 were studied with a focus on the mid-latitude mesosphere at 50°N latitude. Aura Microwave Limb Sounder measurements were used to estimate wave amplitudes in geopotential height during sudden stratospheric warmings in recent boreal winters. The moving correlation between the wave amplitudes shows that, in comparison with the anticorrelation in the stratosphere, wave 2 positively correlates with wave 1 and propagates ahead of it in the mesosphere. A positive correlation r = 0.5–0.6, statistically significant at the 95% confidence level, is observed at 1–5-day time lag and in the 75–91 km altitude range, which is the upper mesosphere–mesopause region. Wavelet analysis shows a clear 8-day period in waves 1 and 2 in the mesosphere at 0.01 hPa (80 km), while in the stratosphere–lower mesosphere, the period is twice as long at 16 days; this is statistically significant only in wave 2. Possible sources of mesospheric planetary waves associated with zonal flow instabilities and breaking or dissipation of gravity waves are discussed.


2020 ◽  
Vol 33 (2) ◽  
pp. 527-545 ◽  
Author(s):  
Zhuozhuo Lü ◽  
Fei Li ◽  
Yvan J. Orsolini ◽  
Yongqi Gao ◽  
Shengping He

AbstractIt is unclear whether the Eurasian snow plays a role in the tropospheric driving of sudden stratospheric warming (SSW). The major SSW event of February 2018 is analyzed using reanalysis datasets. Characterized by predominant planetary waves of zonal wave 2, the SSW developed into a vortex split via wave–mean flow interaction. In the following two weeks, the downward migration of zonal-mean zonal wind anomalies was accompanied by a significant transition to the negative phase of the North Atlantic Oscillation, leading to extensive cold extremes across Europe. Here, we demonstrate that anomalous Siberian snow accumulation could have played an important role in the 2018 SSW occurrence. In the 2017/18 winter, snow depths over Siberia were much higher than normal. A lead–lag correlation analysis shows that the positive fluctuating snow depth anomalies, leading to intensified “cold domes” over eastern Siberia (i.e., in a region where the climatological upward planetary waves maximize), precede enhanced wave-2 pulses of meridional heat fluxes (100 hPa) by 7–8 days. The snow–SSW linkage over 2003–19 is further investigated, and some common traits among three split events are found. These include a time lag of about one week between the maximum anomalies of snow depth and wave-2 pulses (100 hPa), high sea level pressure favored by anomalous snowpack, and a ridge anchoring over Siberia as precursor of the splits. The role of tropospheric ridges over Alaska and the Urals in the wave-2 enhancement and the role of Arctic sea ice loss in Siberian snow accumulation are also discussed.


2019 ◽  
Author(s):  
Yuke Wang ◽  
Valery Shulga ◽  
Gennadi Milinevsky ◽  
Aleksey Patoka ◽  
Oleksandr Evtushevsky ◽  
...  

Abstract. The impact of a major sudden stratospheric warming (SSW) in the Arctic in February 2018 on the mid-latitude mesosphere was investigated by performing microwave radiometer measurements of carbon monoxide (CO) and zonal wind above Kharkiv, Ukraine (50.0° N, 36.3° E). The mesospheric peculiarities of this SSW event were observed using recently designed and installed microwave radiometer in East Europe for the first time. The data from the ERA-Interim and NCEP–NCAR reanalyses, as well as the Aura Microwave Limb Sounder measurements, have been also used. Microwave observations of the daily CO profiles in January–March 2018 allowed retrieving mesospheric zonal wind at 70–85 km (below the winter mesopause) over the Kharkiv site. The reverse of the mesospheric westerly from about 10 m s−1 to the easterly wind of about −10 m s−1 around 10 February has been registered. Local microwave observations in the NH midlatitudes combined with reanalysis data show wide ranges of daily variability in CO, zonal wind, temperature and geopotential height in the mesosphere and stratosphere during the SSW 2018. Oscillations in the vertical CO profile, zonal wind, and geopotential height during the SSW, stratopause disappearance after the SSW onset and strong CO and westerly wind peaks at the start of the SSW recovery phase have been observed. The observed CO variability can be explained by vertical and horizontal air mass redistribution due to planetary wave activity with the replacement of the CO-rich air by CO-poor air and vice versa, in agreement with other studies. The results of microwave measurements of CO and zonal wind in the midlatitude mesosphere at 70–85 km altitudes, which still is not adequately covered by ground-based observations, are useful for improving our understanding of the SSW impacts in this region.


2016 ◽  
Vol 10 (1) ◽  
pp. 117-126 ◽  
Author(s):  
I. V. Karpov ◽  
F. S. Bessarab ◽  
Yu. N. Korenkov ◽  
V. V. Klimenko ◽  
M. V. Klimenko

2021 ◽  
Author(s):  
Guangyu Liu ◽  
Toshihiko Hirooka ◽  
Nawo Eguchi ◽  
Kirstin Krüger

Abstract. This study analyzes the Japanese 55-year Reanalysis (JRA-55) dataset from 2002 to 2019 to examine the sudden stratospheric warming event that occurred in the Southern Hemisphere (SH) in 2019 (hereafter referred to as SSW2019). Strong warming at the polar cap and decelerated westerly winds were observed, but since there was no reversal of westerly winds to easterly winds at 60° S in the middle to lower stratosphere, the SSW2019 is classified as a minor warming event. The results show that quasi-stationary planetary waves of zonal wavenumber 1 developed during the SSW2019. The strong vertical component of the Eliassen–Palm flux with zonal wavenumber 1 is indicative of pronounced propagation of planetary waves to the stratosphere. The wave driving in September 2019 shows that the values are larger than those of the major SSW event in 2002 (hereafter referred to as SSW2002). Since there was no pronounced preconditioning (as in SSW2002) and the polar vortex was already strong before the SSW2019 occurred, a major disturbance of the polar vortex was unlikely to have taken place. The strong wave driving in SSW2019 occurred in high latitudes. Waveguides (i.e., positive values of the refractive index) are found at high latitudes in the upper stratosphere during the warming period, which provided favorable conditions for quasi-stationary planetary waves to propagate upward and poleward.


2015 ◽  
Vol 33 (6) ◽  
pp. 783-788 ◽  
Author(s):  
K. Hocke ◽  
M. Lainer ◽  
A. Schanz

Abstract. We present the characteristics of a major sudden stratospheric warming (SSW) by using the composite analysis method and ERA Interim reanalysis data from 1979 to 2014. The anomalies of the parameters total ozone column density (TOC), temperature (T), potential vorticity (PV), eastward wind (u), northward wind (v), vertical wind (w), and geopotential height (z) are derived with respect to the ERA Interim climatology (mean seasonal behaviour 1979 to 2014). The composites are calculated by using the time series of the anomalies and the central dates of 20 major SSWs. Increases of up to 90 Dobson units are found for polar TOC after the SSW. Polar TOC remains enhanced until the summer after the major SSW. Precursors of the SSW are a negative TOC anomaly 3 months before the SSW and enhanced temperature at 10 hPa at mid-latitudes about 1 month before the SSW. Eastward wind at 1 hPa is decreased at mid-latitudes about 1 month before the SSW. The 1 hPa geopotential height level is increased by about 500 m during the month before the SSW. These features are significant at the 2σ level for the mean behaviour of the ensemble of the major SSWs. However, knowledge of these precursors may not lead to a reliable prediction of an individual SSW since the variability of the individual SSWs and the polar winter stratosphere is large.


2019 ◽  
Author(s):  
Erik Anders Lindgren ◽  
Aditi Sheshadri

Abstract. The effects of eddy-eddy interactions on sudden stratospheric warming formation are investigated using an idealized atmospheric general circulation model, in which tropospheric heating perturbations of zonal wave numbers 1 and 2 are used to produce planetary scale wave activity. Eddy-eddy interactions are removed at different vertical extents of the atmosphere in order to examine the sensitivity of stratospheric circulation to local changes in eddy-eddy interactions. We show that the effects of eddy-eddy interactions on sudden warming formation, including sudden warming frequencies, are strongly dependent on the wave number of the tropospheric forcing and the vertical levels where eddy-eddy interactions are removed. Significant changes in sudden warming frequencies are evident when eddy-eddy interactions are removed even when the lower stratospheric wave forcing does not change, highlighting the fact that the upper stratosphere is not a passive recipient of wave forcing from below. We find that while eddy-eddy interactions are required in the troposphere and lower stratosphere to produce displacements when wave number 2 heating is used, both splits and displacements can be produced without eddy-eddy interactions in the troposphere and lower stratosphere when the model is forced by wave number 1 heating. We suggest that the relative strengths of wave numbers 1 and 2 vertical wave flux entering the stratosphere largely determine the split and displacement ratios when wave number 2 forcing is used, but not wave number 1.


2014 ◽  
Vol 41 (13) ◽  
pp. 4745-4752 ◽  
Author(s):  
R. J. Wit ◽  
R. E. Hibbins ◽  
P. J. Espy ◽  
Y. J. Orsolini ◽  
V. Limpasuvan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document