Differing Responses of the Diurnal Cycle of Land Surface and Air Temperatures to Deforestation

2019 ◽  
Vol 32 (20) ◽  
pp. 7067-7079 ◽  
Author(s):  
Liang Chen ◽  
Paul A. Dirmeyer

ABSTRACT Recent studies have shown the impacts of historical land-use land-cover changes (i.e., deforestation) on hot temperature extremes; contradictory temperature responses have been found between studies using observations and climate models. However, different characterizations of surface temperature are sometimes used in the assessments: land surface skin temperature Ts is more commonly used in observation-based studies while near-surface air temperature T2m is more often used in model-based studies. The inconsistent use of temperature variables is not inconsequential, and the relationship between deforestation and various temperature changes can be entangled, which complicates comparisons between observations and model simulations. In this study, the responses in the diurnal cycle of summertime Ts and T2m to deforestation are investigated using the Community Earth System Model. For the daily maximum, opposite responses are found in Ts and T2m. Due to decreased surface roughness after deforestation, the heat at the land surface cannot be efficiently dissipated into the air, leading to a warmer surface but cooler air. For the daily minimum, strong warming is found in T2m, which exceeds daytime cooling and leads to overall warming in daily mean temperatures. After comparing several climate models, we find that the models agree in daytime land surface (Ts) warming, but different turbulent transfer characteristics produce discrepancies in T2m. Our work highlights the need to investigate the diurnal cycles of temperature responses carefully in land-cover change studies. Furthermore, consistent consideration of temperature variables should be applied in future comparisons involving observations and climate models.

2018 ◽  
Vol 57 (10) ◽  
pp. 2267-2283 ◽  
Author(s):  
Dongwei Liu ◽  
C. S. B. Grimmond ◽  
Jianguo Tan ◽  
Xiangyu Ao ◽  
Jie Peng ◽  
...  

AbstractA simple model, the Surface Temperature and Near-Surface Air Temperature (at 2 m) Model (TsT2m), is developed to downscale numerical model output (such as from ECMWF) to obtain higher-temporal- and higher-spatial-resolution surface and near-surface air temperature. It is evaluated in Shanghai, China. Surface temperature (Ts) and near-surface air temperature (Ta) submodels account for variations in land cover and their different thermal properties, resulting in spatial variations of surface and air temperature. The net all-wave radiation parameterization (NARP) scheme is used to compute net wave radiation for the surface temperature submodel, the objective hysteresis model (OHM) is used to calculate the net storage heat fluxes, and the surface temperature is obtained by the force-restore method. The near-surface air temperature submodel considers the horizontal and vertical energy changes for a column of well-mixed air above the surface. Modeled surface temperatures reproduce the general pattern of MODIS images well, while providing more detailed patterns of the surface urban heat island. However, the simulated surface temperatures capture the warmer urban land cover and are 10.3°C warmer on average than those derived from the coarser MODIS data. For other land-cover types, values are more similar. Downscaled, higher-temporal- and higher-spatial-resolution air temperatures are compared to observations at 110 automatic weather stations across Shanghai. After downscaling with TsT2m, the average forecast accuracy of near-surface air temperature is improved by about 20%. The scheme developed has considerable potential for prediction and mitigation of urban climate conditions, particularly for weather and climate services related to heat stress.


2018 ◽  
Author(s):  
Johannes Winckler ◽  
Christian H. Reick ◽  
Sebastiaan Luyssaert ◽  
Alessandro Cescatti ◽  
Paul C. Stoy ◽  
...  

Abstract. Deforestation affects temperatures at the land surface and higher up in the atmosphere. Satellite-based observations typically register deforestation-induced changes in surface temperature, in-situ observations register changes in near-surface air temperature, and climate models simulate changes in both temperatures and the temperature of the lowest atmospheric layer. Yet a focused analysis of how these variables respond differently to deforestation is missing. Here, this is investigated by analyzing the biogeophysical temperature effects of large-scale deforestation in the climate model MPI-ESM, separately for local effects (which are only apparent at the location of deforestation) and nonlocal effects (which are also apparent elsewhere). While the nonlocal effects affect the temperature of the surface and lowest atmospheric layer equally, the local effects mainly affect the temperature of the surface. In agreement with observation-based studies, the local effects on surface and near-surface air temperature respond differently in the MPI-ESM, both concerning the magnitude of local temperature changes and the latitude at which the local deforestation effects turn from a cooling to a warming (at 45–55° N for surface temperature and around 35° N for near-surface air temperature). An inter-model comparison shows that in the northern mid latitudes, both for summer and winter, near-surface air temperature is affected by the 5local effects only about half as much compared to surface temperature. Thus, studies about the biogeophysical effects of deforestation must carefully choose which temperature they consider.


2007 ◽  
Vol 46 (10) ◽  
pp. 1587-1605 ◽  
Author(s):  
J-F. Miao ◽  
D. Chen ◽  
K. Borne

Abstract In this study, the performance of two advanced land surface models (LSMs; Noah LSM and Pleim–Xiu LSM) coupled with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), version 3.7.2, in simulating the near-surface air temperature in the greater Göteborg area in Sweden is evaluated and compared using the GÖTE2001 field campaign data. Further, the effects of different planetary boundary layer schemes [Eta and Medium-Range Forecast (MRF) PBLs] for Noah LSM and soil moisture initialization approaches for Pleim–Xiu LSM are investigated. The investigation focuses on the evaluation and comparison of diurnal cycle intensity and maximum and minimum temperatures, as well as the urban heat island during the daytime and nighttime under the clear-sky and cloudy/rainy weather conditions for different experimental schemes. The results indicate that 1) there is an evident difference between Noah LSM and Pleim–Xiu LSM in simulating the near-surface air temperature, especially in the modeled urban heat island; 2) there is no evident difference in the model performance between the Eta PBL and MRF PBL coupled with the Noah LSM; and 3) soil moisture initialization is of crucial importance for model performance in the Pleim–Xiu LSM. In addition, owing to the recent release of MM5, version 3.7.3, some experiments done with version 3.7.2 were repeated to reveal the effects of the modifications in the Noah LSM and Pleim–Xiu LSM. The modification to longwave radiation parameterizations in Noah LSM significantly improves model performance while the adjustment of emissivity, one of the vegetation properties, affects Pleim–Xiu LSM performance to a larger extent. The study suggests that improvements both in Noah LSM physics and in Pleim–Xiu LSM initialization of soil moisture and parameterization of vegetation properties are important.


2021 ◽  
Author(s):  
Thordis Thorarinsdottir ◽  
Jana Sillmann ◽  
Marion Haugen ◽  
Nadine Gissibl ◽  
Marit Sandstad

<p>Reliable projections of extremes in near-surface air temperature (SAT) by climate models become more and more important as global warming is leading to significant increases in the hottest days and decreases in coldest nights around the world with considerable impacts on various sectors, such as agriculture, health and tourism.</p><p>Climate model evaluation has traditionally been performed by comparing summary statistics that are derived from simulated model output and corresponding observed quantities using, for instance, the root mean squared error (RMSE) or mean bias as also used in the model evaluation chapter of the fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). Both RMSE and mean bias compare averages over time and/or space, ignoring the variability, or the uncertainty, in the underlying values. Particularly when interested in the evaluation of climate extremes, climate models should be evaluated by comparing the probability distribution of model output to the corresponding distribution of observed data.</p><p>To address this shortcoming, we use the integrated quadratic distance (IQD) to compare distributions of simulated indices to the corresponding distributions from a data product. The IQD is the proper divergence associated with the proper continuous ranked probability score (CRPS) as it fulfills essential decision-theoretic properties for ranking competing models and testing equality in performance, while also assessing the full distribution.</p><p>The IQD is applied to evaluate CMIP5 and CMIP6 simulations of monthly maximum (TXx) and minimum near-surface air temperature (TNn) over the data-dense regions Europe and North America against both observational and reanalysis datasets. There is not a notable difference between the model generations CMIP5 and CMIP6 when the model simulations are compared against the observational dataset HadEX2. However, the CMIP6 models show a better agreement with the reanalysis ERA5 than CMIP5 models, with a few exceptions. Overall, the climate models show higher skill when compared against ERA5 than when compared against HadEX2. While the model rankings vary with region, season and index, the model evaluation is robust against changes in the grid resolution considered in the analysis.</p>


2013 ◽  
Vol 10 (3) ◽  
pp. 1501-1516 ◽  
Author(s):  
J. P. Boisier ◽  
N. de Noblet-Ducoudré ◽  
P. Ciais

Abstract. Regional cooling resulting from increases in surface albedo has been identified in several studies as the main biogeophysical effect of past land use-induced land cover changes (LCC) on climate. However, the amplitude of this effect remains quite uncertain due to, among other factors, (a) uncertainties in the extent of historical LCC and, (b) differences in the way various models simulate surface albedo and more specifically its dependency on vegetation type and snow cover. We derived monthly albedo climatologies for croplands and four other land cover types from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. We then reconstructed the changes in surface albedo between preindustrial times and present-day by combining these climatologies with the land cover maps of 1870 and 1992 used by seven land surface models (LSMs) in the context of the LUCID ("Land Use and Climate: identification of robust Impacts") intercomparison project. These reconstructions show surface albedo increases larger than 10% (absolute) in winter, and larger than 2% in summer between 1870 and 1992 over areas that experienced intense deforestation in the northern temperate regions. The historical surface albedo changes estimated with MODIS data were then compared to those simulated by the various climate models participating in LUCID. The inter-model mean albedo response to LCC shows a similar spatial and seasonal pattern to the one resulting from the MODIS-based reconstructions, that is, larger albedo increases in winter than in summer, driven by the presence of snow. However, individual models show significant differences between the simulated albedo changes and the corresponding reconstructions, despite the fact that land cover change maps are the same. Our analyses suggest that the primary reason for those discrepancies is how LSMs parameterize albedo. Another reason, of secondary importance, results from differences in their simulated snow extent. Our methodology is a useful tool not only to infer observations-based historical changes in land surface variables impacted by LCC, but also to point out deficiencies of the models. We therefore suggest that it could be more widely developed and used in conjunction with other tools in order to evaluate LSMs.


2015 ◽  
Vol 12 (8) ◽  
pp. 7665-7687 ◽  
Author(s):  
C. L. Pérez Díaz ◽  
T. Lakhankar ◽  
P. Romanov ◽  
J. Muñoz ◽  
R. Khanbilvardi ◽  
...  

Abstract. Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1494
Author(s):  
Fernanda Casagrande ◽  
Francisco A. B. Neto ◽  
Ronald B. de Souza ◽  
Paulo Nobre

One of the most visible signs of global warming is the fast change in the polar regions. The increase in Arctic temperatures, for instance, is almost twice as large as the global average in recent decades. This phenomenon is known as the Arctic Amplification and reflects several mutually supporting processes. An equivalent albeit less studied phenomenon occurs in Antarctica. Here, we used numerical climate simulations obtained from CMIP5 and CMIP6 to investigate the effects of +1.5, 2 and 3 °C warming thresholds for sea ice changes and polar amplification. Our results show robust patterns of near-surface air-temperature response to global warming at high latitudes. The year in which the average air temperatures brought from CMIP5 and CMIP6 models rises by 1.5 °C is 2024. An average rise of 2 °C (3 °C) global warming occurs in 2042 (2063). The equivalent warming at northern (southern) high latitudes under scenarios of 1.5 °C global warming is about 3 °C (1.8 °C). In scenarios of 3 °C global warming, the equivalent warming in the Arctic (Antarctica) is close to 7 °C (3.5 °C). Ice-free conditions are found in all warming thresholds for both the Arctic and Antarctica, especially from the year 2030 onwards.


2021 ◽  
Author(s):  
Gabriel Bromley ◽  
Andreas F. Prein ◽  
Shannon E. Albeke ◽  
Paul C. Stoy

Abstract Land management strategies can moderate or intensify the impacts of a warming atmosphere. Since the early 1980s, nearly 116,000 km2 of crop land that was once held in fallow during the summer is now planted in the northern North American Great Plains. To simulate the impacts of this substantial land cover change on regional climate processes, convection-permitting model experiments using the Weather Research and Forecasting (WRF) model were performed to simulate modern and historical amounts of summer fallow, and were extensively validated using multiple observational data products as well as eddy covariance tower observations. Results of these simulations show that the transition from summer fallow to modern land cover lead to ~1.5 °C cooler temperatures and decreased vapor pressure deficit by ~0.15 kPa during the growing season, which is consistent with observed cooling trends. The cooler and wetter land surface with vegetation leads to a shallower planetary boundary layer and lower lifted condensation level, creating conditions more conducive to convective cloud formation and precipitation. Our model simulations however show little widespread evidence of land surface changes effects on precipitation. The observed precipitation increase in this region is more likely related to increased moisture transport by way of the Great Plains Low Level Jet as suggested by the ERA5 reanalysis. Our results demonstrate that land cover change is consistent with observed regional cooling in the northern North American Great Plains but changes in precipitation cannot be explained by land management alone.


2021 ◽  
Author(s):  
Thomas Cropper ◽  
Elizabeth Kent ◽  
David Berry ◽  
Richard Cornes ◽  
Beatriz Recinos-Rivas

<p>Accurate, long-term time series of near-surface air temperature (AT) are the fundamental datasets on which the magnitude of anthropogenic climate change is scientifically and societally addressed. Across the ocean, these (near-surface) climate records use Sea Surface Temperature (SST) instead of Marine Air Temperature (MAT) and blend the SST and AT over land to create datasets. MAT has often been overlooked as a data choice as daytime MAT observations from ships are known to contain warm biases due to the storage of accumulated solar energy. Two recent MAT datasets, CLASSnmat (1881 – 2019) and UAHNMAT (1900 – 2018), both use night-time MAT observations only. Daytime MAT observations in the International Comprehensive Ocean–Atmosphere Data Set (ICOADS) account for over half of the MAT observations in ICOADS, and this proportion increases further back in time (i.e. pre-1850s). If long-term MAT records over the ocean are to be extended, the use of daytime MAT is vital.</p><p> </p><p>To adjust for the daytime MAT heating bias, and apply it to ICOADS, we present the application of a physics-based model, which accounts for the accumulated energy storage throughout the day. As the ‘true’ diurnal cycle of MAT over the ocean has not been, to-date, adequately quantified, our approach also removes the diurnal cycle from ICOADS observations and generates a night-time equivalent MAT for all observations. We fit this model to MAT observations from groups of ships in ICOADS that share similar heating biases and metadata characteristics. This enables us to use the empirically derived coefficients (representing the physical energy transfer terms of the heating model) obtained from the fit for use in removal of the heating bias and diurnal cycle from ship-based MAT observations throughout ICOADS which share similar characteristics (i.e. we can remove the diurnal cycle from a ship which only reports once daily at noon). This adjustment will create an MAT record of night-time-equivalent temperatures that will enable an extension of the marine surface AT record back into the 18<sup>th</sup> century.</p>


Sign in / Sign up

Export Citation Format

Share Document