On the Southern Hemisphere stratospheric response to ENSO and its impacts on tropospheric circulation

2021 ◽  
pp. 1-51

Abstract As the leading mode of Pacific variability, the El Niño-Southern Oscillation (ENSO) causes vast and wide-spread climatic impacts, including in the stratosphere. Following discovery of a stratospheric pathway of ENSO to the Northern Hemisphere surface, here we aim to investigate if there is a substantial Southern Hemisphere (SH) stratospheric pathway in relation to austral winter ENSO events. Large stratospheric anomalies connected to ENSO occur on average at high SH latitudes as early as August, peaking at around 10 hPa. An overall colder austral spring Antarctic stratosphere is generally associated with the warm phase of the ENSO cycle, and vice versa. This behavior is robust among reanalysis and six separate model ensembles encompassing two different model frameworks. A stratospheric pathway is identified by separating ENSO events that exhibit a stratospheric anomaly from those that don’t and comparing to stratospheric extremes that occur during neutral-ENSO years. The tropospheric eddy-driven jet response to the stratospheric ENSO pathway is the most robust in the spring following a La Niña, but extends into summer, and is more zonally-symmetric compared to the tropospheric ENSO teleconnection. The magnitude of the stratospheric pathway is weaker compared to the tropospheric pathway and therefore when it is present, has a secondary role. For context, the magnitude is approximately half that of the eddy-driven jet modulation due to austral spring ozone depletion in the model simulations. This work establishes that the stratospheric circulation acts as an intermediary in coupling ENSO variability to variations in the austral spring and summer tropospheric circulation.

2021 ◽  
Author(s):  
Marisol Osman ◽  
Theodore Shepherd ◽  
Carolina Vera

<p>The influence of El Niño Southern Oscillation (ENSO) and the Stratospheric Polar Vortex (SPV) on the zonal asymmetries in the Southern Hemisphere atmospheric circulation during spring and summer is examined. The main objective is to explore if the SPV can modulate the ENSO teleconnections in the extratropics. We use a large ensemble of seasonal hindcasts from the European Centre for Medium-Range Weather Forecasts Integrated Forecast System to provide a much larger sample size than is possible from the observations alone.</p><p>We find a small but statistically significant relationship between ENSO and the SPV, with El Niño events occurring with weak SPV and La Niña events occurring with strong SPV more often than expected by chance, in agreement with previous works. We show that the zonally asymmetric response to ENSO and SPV can be mainly explained by a linear combination of the response to both forcings, and that they can combine constructively or destructively. From this perspective, we find that the tropospheric asymmetries in response to ENSO are more intense when El Niño events occur with weak SPV and La Niña events occur with strong SPV, at least from September through December. In the stratosphere, the ENSO teleconnections are mostly confounded by the SPV signal. The analysis of Rossby Wave Source and of wave activity shows that both are stronger when El Niño events occur together with weak SPV, and when La Niña events occur together with strong SPV.</p>


Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 901-910 ◽  
Author(s):  
H Kitagawa ◽  
Hitoshi Mukai ◽  
Yukihiro Nojiri ◽  
Yasuyuki Shibata ◽  
Toshiyuki Kobayashi ◽  
...  

Air sample collections over the western Pacific have continued since 1992 as a part of Center for Global Environmental Research, National Institute for Environmental Studies (CGER-NIES) global environmental monitoring program. The air samples collected on the Japan-Australia transect made it possible to trace the seasonal and secular 14CO2 variations, as well as an increasing trend of greenhouse gases over the western Pacific. A subset of CO2 samples from latitudes of 10–15°N and 23–28°S were chosen for accelerator mass spectrometry (AMS) 14C analysis using a NIES-TERRA AMS with a 0.3–0.4% precision. These 14CO2 records in maritime air show seasonal variations superimposed on normal exponential decreasing trends with a time constant of about 16 yr. The Δ14C values in the Northern Hemisphere are lower those in the Southern Hemisphere by 3–4 during 1994–2002. The Northern Hemisphere record shows relatively high seasonality (2.3 ± 1.5) as compared with the Southern Hemisphere (1.3 ± 1.2). The maximum values of seasonal cycles appear in late autumn and early winter in the Northern and Southern Hemispheres, respectively. Oscillations of 1–10 yr over the western Pacific are found to correlate possibly with the El Niño/Southern Oscillation (ENSO) events.


2016 ◽  
Vol 29 (5) ◽  
pp. 1797-1808 ◽  
Author(s):  
Lee J. Welhouse ◽  
Matthew A. Lazzara ◽  
Linda M. Keller ◽  
Gregory J. Tripoli ◽  
Matthew H. Hitchman

Abstract Previous investigations of the relationship between El Niño–Southern Oscillation (ENSO) and the Antarctic climate have focused on regions that are impacted by both El Niño and La Niña, which favors analysis over the Amundsen and Bellingshausen Seas (ABS). Here, 35 yr (1979–2013) of European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) data are analyzed to investigate the relationship between ENSO and Antarctica for each season using a compositing method that includes nine El Niño and nine La Niña periods. Composites of 2-m temperature (T2m), sea level pressure (SLP), 500-hPa geopotential height, sea surface temperatures (SST), and 300-hPa geopotential height anomalies were calculated separately for El Niño minus neutral and La Niña minus neutral conditions, to provide an analysis of features associated with each phase of ENSO. These anomaly patterns can differ in important ways from El Niño minus La Niña composites, which may be expected from the geographical shift in tropical deep convection and associated pattern of planetary wave propagation into the Southern Hemisphere. The primary new result is the robust signal, during La Niña, of cooling over East Antarctica. This cooling is found from December to August. The link between the southern annular mode (SAM) and this cooling is explored. Both El Niño and La Niña experience the weakest signal during austral autumn. The peak signal for La Niña occurs during austral summer, while El Niño is found to peak during austral spring.


2005 ◽  
Vol 133 (6) ◽  
pp. 1574-1593 ◽  
Author(s):  
Wanqiu Wang ◽  
Suranjana Saha ◽  
Hua-Lu Pan ◽  
Sudhir Nadiga ◽  
Glenn White

Abstract A new global coupled atmosphere–ocean forecast system model (CFS03) has recently been developed at the National Centers for Environmental Prediction (NCEP). The new coupled model consists of a T62L64 version of the operational NCEP Atmospheric Global Forecast System model and the Geophysical Fluid Dynamics Laboratory Modular Ocean Model version 3, and is expected to replace the current NCEP operational coupled seasonal forecast model. This study assesses the performance of the new coupled model in simulating El Niño–Southern Oscillation (ENSO), which is considered to be a desirable feature for models used for seasonal prediction. The diagnoses indicate that the new coupled model simulates ENSO variability with realistic frequency. The amplitude of the simulated ENSO is similar to that of the observed strong events, but the ENSO events in the simulation occur more regularly than in observations. The model correctly simulates the observed ENSO seasonal phase locking with the peak amplitude near the end of the year. On average, however, simulated warm events tend to start about 3 months earlier and persist longer than observed. The simulated ENSO is consistent with the delayed oscillator, recharge oscillator, and advective–reflective oscillator theories, suggesting that each of these mechanisms may operate at the same time during the ENSO cycle. The diagnoses of the simulation indicate that the model may be suitable for real-time prediction of ENSO.


2016 ◽  
Vol 29 (17) ◽  
pp. 6319-6328 ◽  
Author(s):  
Tao Li ◽  
Natalia Calvo ◽  
Jia Yue ◽  
James M. Russell ◽  
Anne K. Smith ◽  
...  

Abstract In the Southern Hemisphere (SH) polar region, satellite observations reveal a significant upper-mesosphere cooling and a lower-thermosphere warming during warm ENSO events in December. An opposite pattern is observed in the tropical mesopause region. The observed upper-mesosphere cooling agrees with a climate model simulation. Analysis of the simulation suggests that enhanced planetary wave (PW) dissipation in the Northern Hemisphere (NH) high-latitude stratosphere during El Niño strengthens the Brewer–Dobson circulation and cools the equatorial stratosphere. This increases the magnitude of the SH stratosphere meridional temperature gradient and thus causes the anomalous stratospheric easterly zonal wind and early breakdown of the SH stratospheric polar vortex. The resulting perturbation to gravity wave (GW) filtering causes anomalous SH mesospheric eastward GW forcing and polar upwelling and cooling. In addition, constructive inference of ENSO and quasi-biennial oscillation (QBO) could lead to stronger stratospheric easterly zonal wind anomalies at the SH high latitudes in November and December and early breakdown of the SH stratospheric polar vortex during warm ENSO events in the easterly QBO phase (defined by the equatorial zonal wind at ~25 hPa). This would in turn cause much more SH mesospheric eastward GW forcing and much colder polar temperatures, and hence it would induce an early onset time of SH summer polar mesospheric clouds (PMCs). The opposite mechanism occurs during cold ENSO events in the westerly QBO phase. This implies that ENSO together with QBO could significantly modulate the breakdown time of SH stratospheric polar vortex and the onset time of SH PMC.


2015 ◽  
Vol 28 (7) ◽  
pp. 2691-2705 ◽  
Author(s):  
Regina R. Rodrigues ◽  
Edmo J. D. Campos ◽  
Reindert Haarsma

Abstract The impact of El Niño–Southern Oscillation (ENSO) on the South Atlantic subtropical dipole mode (SASD) is investigated using both observations and model simulations. The SASD is the dominant mode of coupled ocean–atmosphere variability in the South Atlantic. This study focuses on austral summer, when both ENSO and SASD peak. It is shown that negative SASD events are associated with central Pacific El Niño events by triggering the Pacific–South American wave train (PSA). The latter resembles the third leading mode of atmospheric variability in the Southern Hemisphere (PSA2) and causes a weakening and meridional shift of the South Atlantic subtropical high, which then generates the negative SASD events. On the other hand, a strengthening of the South Atlantic subtropical high related to central La Niña teleconnections causes positive SASD events. The results herein show that the PSA2, triggered by central Pacific ENSO events, connects the tropical Pacific to the Atlantic. This connection is absent from eastern Pacific ENSO events, which appear to initiate the second leading mode of atmospheric variability in the Southern Hemisphere (PSA1). It is for this reason that previous studies have found weak correlations between ENSO and SASD. These findings can improve the climate prediction of southeastern South America and southern Africa since these regions are affected by sea surface temperature anomalies of both the Pacific and Atlantic Oceans.


2013 ◽  
Vol 52 (3) ◽  
pp. 623-633 ◽  
Author(s):  
Vincent Moron ◽  
Renaud Barbero ◽  
Morgan Mangeas ◽  
Laurent Borgniet ◽  
Thomas Curt ◽  
...  

AbstractAn empirical statistical scheme for predicting September–December fires in New Caledonia in the southwestern Pacific Ocean region using a cross-validated generalized linear model has been developed for the 2000–10 period. The predictor employs July sea surface temperatures (SST) recorded over the Niño-4 box (5°S–5°N, 160°–210°E), which are closely related to austral spring (September–November) rainfall anomalies across New Caledonia. The correlation between the logarithm of observed and simulated total burned areas across New Caledonia is 0.87. A decrease in the local-scale skill (median correlation between the log of observed and simulated total burned areas in a 20-km radius around a rain gauge = 0.46) around the main town (Nouméa) and its suburbs in the southwest of Grande Terre, and also in northern New Caledonia, could be associated either with a weaker climatic forcing from the Niño-4 SST index or a small-scale climatic forcing not linearly related to the El Niño–Southern Oscillation (ENSO) phenomenon. It is more likely that the decrease is tied to the influence of human-driven factors that blur the regional-scale climatic signal mostly associated with central Pacific ENSO events.


2015 ◽  
Vol 28 (23) ◽  
pp. 9393-9408 ◽  
Author(s):  
Jin-Yi Yu ◽  
Houk Paek ◽  
Eric S. Saltzman ◽  
Tong Lee

Abstract This study uncovers an early 1990s change in the relationships between El Niño–Southern Oscillation (ENSO) and two leading modes of the Southern Hemisphere (SH) atmospheric variability: the southern annular mode (SAM) and the Pacific–South American (PSA) pattern. During austral spring, while the PSA maintained a strong correlation with ENSO throughout the period 1948–2014, the SAM–ENSO correlation changed from being weak before the early 1990s to being strong afterward. Through the ENSO connection, PSA and SAM became more in-phase correlated after the early 1990s. The early 1990s is also the time when ENSO changed from being dominated by the eastern Pacific (EP) type to being dominated by the central Pacific (CP) type. Analyses show that, while the EP ENSO can excite only the PSA, the CP ENSO can excite both the SAM and PSA through tropospheric and stratospheric pathway mechanisms. The more in-phase relationship between SAM and PSA impacted the post-1990s Antarctic climate in at least two aspects: 1) a stronger Antarctic sea ice dipole structure around the Amundsen–Bellingshausen Seas due to intensified geopotential height anomalies over the region and 2) a shift in the phase relationships of surface air temperature anomalies among East Antarctica, West Antarctica, and the Antarctic Peninsula. These findings imply that ENSO–Antarctic climate relations depend on the dominant ENSO type and that ENSO forcing has become more important to the Antarctic sea ice and surface air temperature variability in the past two decades and will in the coming decades if the dominance of CP ENSO persists.


2016 ◽  
Vol 66 (3) ◽  
pp. 228
Author(s):  
David J. Martin

Southern hemisphere circulation patterns and associated anomalies for the austral spring 2015 are reviewed, with an emphasis on Pacific climate indicators and Australian rainfall and temperature patterns. A strong El Niño persisted in the tropical Pacific Ocean with sea-surface temperature anomalies in excess of +2 °C in central and eastern parts, strongly negative outgoing longwave radiation near the Date Line, and the Southern Oscillation Index showing large negative departures. The positive Indian Ocean Dipole that had established in winter dissipated in late November, but was particularly influential on Australia's climate during the months of September and October.Australia’s spring rainfall was below average in the first two months, but improved later in the season: the northern half of Western Australia recorded above average November rainfall. Nevertheless, area-averaged rainfall in spring was below average for the country as a whole. For Australia, October was the warmest on record and had the highest mean temperature anomaly on record for any month since 1910. Spring temperatures were above average and Australia recorded its second-warmest spring on record, behind the record set in the previous year.


Sign in / Sign up

Export Citation Format

Share Document