Comparison of TRMM Precipitation Retrievals with Rain Gauge Data from Ocean Buoys

2005 ◽  
Vol 18 (1) ◽  
pp. 178-190 ◽  
Author(s):  
Kenneth P. Bowman

Abstract Four years of precipitation retrievals from the Tropical Rainfall Measuring Mission (TRMM) satellite are compared with data from 25 surface rain gauges on the National Oceanic and Atmospheric Administration/Pacific Marine Environment Laboratory (NOAA/PMEL) Tropical Atmosphere–Ocean Array/Triangle Trans-Ocean Buoy Network TAO/TRITON buoy array in the tropical Pacific. The buoy gauges have a significant advantage over island-based gauges for this purpose because they represent open-ocean conditions and are not affected by island orography or surface heating. Because precipitation is correlated with itself in both space and time, comparisons between the two data sources can be improved by properly averaging in space and/or time. When comparing gauges with individual satellite overpasses, the optimal averaging time for the gauge (centered on the satellite overpass time) depends on the area over which the satellite data are averaged. For 1° × 1° areas there is a broad maximum in the correlation for gauge-averaging periods of ∼2 to 10 h. Maximum correlations r are in the range 0.6 to 0.7. For larger satellite averaging areas, correlations with the gauges are smaller (because a single gauge becomes less representative of the precipitation in the box) and the optimum gauge-averaging time is longer. For individual satellite overpasses averaged over a 1° × 1° box, the relative rms difference with respect to a rain gauge centered in the box is ∼200% to 300%. For 32-day time means over 1° × 1° boxes, the relative rms difference between the satellite data and a gauge is in the range of 40% to 70%. The bias between the gauges and the satellite retrievals is estimated by correlating the long-term time-mean precipitation estimates across the set of gauges. The TRMM Microwave Imager (TMI) gives an r2 of 0.97 and a slope of 0.970, indicating very little bias with respect to the gauges. For the Precipitation Radar (PR) the comparable numbers are 0.92 and 0.699. The results of this study are consistent with the sampling error estimates from the statistical model of Bell and Kundu.

2007 ◽  
Vol 24 (9) ◽  
pp. 1598-1607 ◽  
Author(s):  
Jeremy D. DeMoss ◽  
Kenneth P. Bowman

Abstract During the first three-and-a-half years of the Tropical Rainfall Measuring Mission (TRMM), the TRMM satellite operated at a nominal altitude of 350 km. To reduce drag, save maneuvering fuel, and prolong the mission lifetime, the orbit was boosted to 403 km in August 2001. The change in orbit altitude produced small changes in a wide range of observing parameters, including field-of-view size and viewing angles. Due to natural variability in rainfall and sampling error, it is not possible to evaluate possible changes in rainfall estimates from the satellite data alone. Changes in TRMM Microwave Imager (TMI) and the precipitation radar (PR) precipitation observations due to the orbit boost are estimated by comparing them with surface rain gauges on ocean buoys operated by the NOAA/Pacific Marine Environment Laboratory (PMEL). For each rain gauge, the bias between the satellite and the gauge for pre- and postboost time periods is computed. For the TMI, the satellite is biased ∼12% low relative to the gauges during the preboost period and ∼1% low during the postboost period. The mean change in bias relative to the gauges is approximately 0.4 mm day−1. The change in TMI bias is rain-rate-dependent, with larger changes in areas with higher mean precipitation rates. The PR is biased significantly low relative to the gauges during both boost periods, but the change in bias from the pre- to postboost period is not statistically significant.


2019 ◽  
Vol 20 (5) ◽  
pp. 1015-1026 ◽  
Author(s):  
Nobuyuki Utsumi ◽  
Hyungjun Kim ◽  
F. Joseph Turk ◽  
Ziad. S. Haddad

Abstract Quantifying time-averaged rain rate, or rain accumulation, on subhourly time scales is essential for various application studies requiring rain estimates. This study proposes a novel idea to estimate subhourly time-averaged surface rain rate based on the instantaneous vertical rain profile observed from low-Earth-orbiting satellites. Instantaneous rain estimates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) are compared with 1-min surface rain gauges in North America and Kwajalein atoll for the warm seasons of 2005–14. Time-lagged correlation analysis between PR rain rates at various height levels and surface rain gauge data shows that the peak of the correlations tends to be delayed for PR rain at higher levels up to around 6-km altitude. PR estimates for low to middle height levels have better correlations with time-delayed surface gauge data than the PR’s estimated surface rain rate product. This implies that rain estimates for lower to middle heights may have skill to estimate the eventual surface rain rate that occurs 1–30 min later. Therefore, in this study, the vertical profiles of TRMM PR instantaneous rain estimates are averaged between the surface and various heights above the surface to represent time-averaged surface rain rate. It was shown that vertically averaged PR estimates up to middle heights (~4.5 km) exhibit better skill, compared to the PR estimated instantaneous surface rain product, to represent subhourly (~30 min) time-averaged surface rain rate. These findings highlight the merit of additional consideration of vertical rain profiles, not only instantaneous surface rain rate, to improve subhourly surface estimates of satellite-based rain products.


2016 ◽  
Vol 33 (7) ◽  
pp. 1539-1556 ◽  
Author(s):  
Paula J. Brown ◽  
Christian D. Kummerow ◽  
David L. Randel

AbstractThe Goddard profiling algorithm (GPROF) is an operational passive microwave retrieval that uses a Bayesian scheme to estimate rainfall. GPROF 2014 retrieves rainfall and hydrometeor vertical profile information based upon a database of profiles constructed to be simultaneously consistent with Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI) observations. A small number of tropical cyclones are in the current database constructed from one year of TRMM data, resulting in the retrieval performing relatively poorly for these systems, particularly for the highest rain rates. To address this deficiency, a new database focusing specifically on hurricanes but consisting of 9 years of TRMM data is created. The new database and retrieval procedure for TMI and GMI is called Hurricane GPROF. An initial assessment of seven tropical cyclones shows that Hurricane GPROF provides a better estimate of hurricane rain rates than GPROF 2014. Hurricane GPROF rain-rate errors relative to the PR are reduced by 20% compared to GPROF, with improvements in the lowest and highest rain rates especially. Vertical profile retrievals for four hydrometeors are also enhanced, as error is reduced by 30% compared to the GPROF retrieval, relative to PR estimates. When compared to the full database of tropical cyclones, Hurricane GPROF improves the RMSE and MAE of rain-rate estimates over those from GPROF by about 22% and 27%, respectively. Similar improvements are also seen in the overall rain-rate bias for hurricanes in the database, which is reduced from 0.20 to −0.06 mm h−1.


2005 ◽  
Vol 44 (3) ◽  
pp. 367-383 ◽  
Author(s):  
Fumie A. Furuzawa ◽  
Kenji Nakamura

Abstract It is well known that precipitation rate estimation is poor over land. Using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI), the performance of the TMI rain estimation was investigated. Their differences over land were checked by using the orbit-by-orbit data for June 1998, December 1998, January 1999, and February 1999, and the following results were obtained: 1) Rain rate (RR) near the surface for the TMI (TMI-RR) is smaller than that for the PR (PR-RR) in winter; it is also smaller from 0900 to 1800 LT. These dependencies show some variations at various latitudes or local times. 2) When the storm height is low (<5 km), the TMI-RR is smaller than the PR-RR; when it is high (>8 km), the PR-RR is smaller. These dependencies of the RR on the storm height do not depend on local time or latitude. The tendency for a TMI-RR to be smaller when the storm height is low is more noticeable in convective rain than in stratiform rain. 3) Rain with a low storm height predominates in winter or from 0600 to 1500 LT, and convective rain occurs frequently from 1200 to 2100 LT. Result 1 can be explained by results 2 and 3. It can be concluded that the TMI underestimates rain with low storm height over land because of the weakness of the TMI algorithm, especially for convective rain. On the other hand, it is speculated that TMI overestimates rain with high storm height because of the effect of anvil rain with low brightness temperatures at high frequencies without rain near the surface, and because of the effect of evaporation or tilting, which is indicated by a PR profile and does not appear in the TMI profile. Moreover, it was found that the PR rain for the cases with no TMI rain amounted to about 10%–30% of the total but that the TMI rain for the cases with no PR rain accounted for only a few percent of the TMI rain. This result can be explained by the difficulty of detecting shallow rain with the TMI.


2003 ◽  
Vol 16 (10) ◽  
pp. 1456-1475 ◽  
Author(s):  
Stephen W. Nesbitt ◽  
Edward J. Zipser

Abstract The Tropical Rainfall Measuring Mission (TRMM) satellite measurements from the precipitation radar and TRMM microwave imager have been combined to yield a comprehensive 3-yr database of precipitation features (PFs) throughout the global Tropics (±36° latitude). The PFs retrieved using this algorithm (which number nearly six million Tropicswide) have been sorted by size and intensity ranging from small shallow features greater than 75 km2 in area to large mesoscale convective systems (MCSs) according to their radar and ice scattering characteristics. This study presents a comprehensive analysis of the diurnal cycle of the observed precipitation features' rainfall amount, precipitation feature frequency, rainfall intensity, convective–stratiform rainfall portioning, and remotely sensed convective intensity, sampled Tropicswide from space. The observations are sorted regionally to examine the stark differences in the diurnal cycle of rainfall and convective intensity over land and ocean areas. Over the oceans, the diurnal cycle of rainfall has small amplitude, with the maximum contribution to rainfall coming from MCSs in the early morning. This increased contribution is due to an increased number of MCSs in the nighttime hours, not increasing MCS areas or conditional rain rates, in agreement with previous works. Rainfall from sub-MCS features over the ocean has little appreciable diurnal cycle of rainfall or convective intensity. Land areas have a much larger rainfall cycle than over the ocean, with a marked minimum in the midmorning hours and a maximum in the afternoon, slowly decreasing through midnight. Non-MCS features have a significant peak in afternoon instantaneous conditional rain rates (the mean rain rate in raining pixels), and convective intensities, which differs from previous studies using rain rates derived from hourly rain gauges. This is attributed to enhancement by afternoon heating. MCSs over land have a convective intensity peak in the late afternoon, however all land regions have MCS rainfall peaks that occur in the late evening through midnight due to their longer life cycle. The diurnal cycle of overland MCS rainfall and convective intensity varies significantly among land regions, attributed to MCS sensitivity to the varying environmental conditions in which they occur.


2013 ◽  
Vol 14 (1) ◽  
pp. 153-170 ◽  
Author(s):  
Yu Zhang ◽  
Dong-Jun Seo ◽  
David Kitzmiller ◽  
Haksu Lee ◽  
Robert J. Kuligowski ◽  
...  

Abstract This paper assesses the accuracy of satellite quantitative precipitation estimates (QPEs) from two versions of the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm relative to that of gridded gauge-only QPEs. The second version of SCaMPR uses the QPEs from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar and Microwave Imager as predictands whereas the first version does not. The assessments were conducted for 22 catchments in Texas and Louisiana against National Weather Service operational multisensor QPE. Particular attention was given to the density below which SCaMPR QPEs outperform gauge-only QPEs and effects of TRMM ingest. Analyses indicate that SCaMPR QPEs can be competitive in terms of correlation and CSI against sparse gauge networks (with less than one gauge per 3200–12 000 km2) and over 1–3-h scale, but their relative strengths diminish with temporal aggregation. In addition, the major advantage of SCaMPR QPEs is its relatively low false alarm rates, whereas gauge-only QPEs exhibit better skill in detecting rainfall—though the detection skill of SCaMPR QPEs tends to improve at higher rainfall thresholds. Moreover, it was found that ingesting TRMM QPEs help mitigate the positive overall bias in SCaMPR QPEs, and improve the detection of moderate–heavy and particularly wintertime precipitation. Yet, it also tends to elevate the false alarm rate, and its impacts on detection rates can be slightly negative for summertime storms. The implications for adoption of TRMM and Global Precipitation Measurement (GPM) QPEs for NWS operations are discussed.


2017 ◽  
Vol 56 (7) ◽  
pp. 1867-1881 ◽  
Author(s):  
Andung Bayu Sekaranom ◽  
Hirohiko Masunaga

AbstractProperties of the rain estimation differences between Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) 2A25, TRMM Microwave Imager (TMI) 2A12, and TRMM Multisatellite Precipitation Analysis (TMPA) 3B42 are investigated with a focus on distinguishing between nonextreme and extreme rains over the Maritime Continent from 1998 to 2014. Statistical analyses of collocated TMI 1B11 85-GHz polarization-corrected brightness temperatures, PR 2A23 storm-top heights, and PR 2A25 vertical rain profiles are conducted to identify possible sources of the differences. The results indicate that a large estimation difference exists between PR and TMI for the general rain rate (extreme and nonextreme events). The PR–TMI rain-rate differences are larger over land and coast than over ocean. When extreme rain is isolated, a higher frequency of occurrence is identified by PR over ocean, followed by TMI and TMPA. Over land, TMI yields higher rain frequencies than PR with an intermediate range of rain rates (between 15 and 25 mm h−1), but it gives way to PR for the highest extremes. The turnover at the highest rain rates arises because the heaviest rain depicted by PR does not necessarily accompany the strongest ice-scattering signals, which TMI relies on for estimating precipitation over land and coast.


2008 ◽  
Vol 47 (11) ◽  
pp. 3016-3029 ◽  
Author(s):  
Shinta Seto ◽  
Takuji Kubota ◽  
Nobuhiro Takahashi ◽  
Toshio Iguchi ◽  
Taikan Oki

Abstract Seto et al. developed rain/no-rain classification (RNC) methods over land for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). In this study, the methods are modified for application to other microwave radiometers. The previous methods match TMI observations with TRMM precipitation radar (PR) observations, classify the TMI pixels into rain pixels and no-rain pixels, and then statistically summarize the observed brightness temperature at the no-rain pixels into a land surface brightness temperature database. In the modified methods, the probability distribution of brightness temperature under no-rain conditions is derived from unclassified TMI pixels without the use of PR. A test with the TMI shows that the modified (PR independent) methods are better than the RNC method developed for the Goddard profiling algorithm (GPROF; the standard algorithm for the TMI) while they are slightly poorer than corresponding previous (PR dependent) methods. M2d, one of the PR-independent methods, is applied to observations from the Advanced Microwave Scanning Radiometer for Earth Observing Satellite (AMSR-E), is evaluated for a matchup case with PR, and is evaluated for 1 yr with a rain gauge dataset in Japan. M2d is incorporated into a retrieval algorithm developed by the Global Satellite Mapping of Precipitation project to be applied for the AMSR-E. In latitudes above 30°N, the rain-rate retrieval is compared with a rain gauge dataset by the Global Precipitation Climatology Center. Without a snow mask, a large amount of false rainfall due to snow contamination occurs. Therefore, a simple snow mask using the 23.8-GHz channel is applied and the threshold of the mask is optimized. Between 30° and 60°N, the optimized snow mask forces the miss of an estimated 10% of the total rainfall.


Author(s):  
Shan-Tai Chen ◽  
◽  
Chien-Chen Wu ◽  
Wann-Jin Chen ◽  
Jen-Chi Hu ◽  
...  

Rain-area identification distinguishes between rainy and non-rainy areas, which is the first step in some critical real-world problems, such as rain intensity identification and rain-rate estimation. We develop a data mining approach for oceanic rain-area identification during typhoon season, using microwave data from the Tropical Rainfall Measuring Mission (TRMM) satellite. Three schemes tailored for the problem are developed, namely (1) association rule analysis for uncovering the set of potential attributes relevant to the problem, (2) three-phase outlier removal for cleaning data and (3) the neural committee classifier (NCC) for achieving more accurate results. We created classification models from 1998-2004 TRMM Microwave Imager (TRMM-TMI) satellite data and used Automatic Rainfall and Meteorological Telemetry System (ARMTS) rain gauge data measurements to evaluate the model. Experimental results show that our approach achieves high accuracy for the rain-area identification problem. The classification accuracy of our approach, 96%, outperforms the 78.6%, 77.3%, 83.3% obtained by the scattering index, threshold check, and rain flag methods, respectively.


Sign in / Sign up

Export Citation Format

Share Document