The Impact of Cloud Radiative Feedback, Remote ENSO Forcing, and Entrainment on the Persistence of North Pacific Sea Surface Temperature Anomalies

2006 ◽  
Vol 19 (23) ◽  
pp. 6243-6261 ◽  
Author(s):  
Sungsu Park ◽  
Michael A. Alexander ◽  
Clara Deser

Abstract The influence of cloud radiative feedback, remote ENSO heat flux forcing, and oceanic entrainment on persisting North Pacific sea surface temperature (SST) anomalies is investigated using a stochastically forced ocean mixed layer model. The stochastic heat flux is estimated from an atmospheric general circulation model, the seasonally varying radiative feedback parameter and remote ENSO forcing are obtained from observations, and entrainment is derived from the observed mean seasonal cycle of ocean mixed layer depth. Persistence is examined via SST autocorrelations in the western, central, and subtropical eastern North Pacific and for the leading pattern of variability across the basin. The contribution of clouds, ENSO, and entrainment to SST persistence is evaluated by comparing simulations with and without each term. The SST autocorrelation structure in the model closely resembles nature: the pattern correlation between the two is 0.87–0.9 in the three regions and for the basinwide analyses, and 0.35–0.66 after subtracting an exponential function representing the background damping resulting from air–sea heat fluxes. Positive radiative feedback enhances SST autocorrelations (∼0.1–0.3) from late spring to summer in the central and western Pacific and from late summer to fall in the subtropical eastern Pacific. The influence of the remote ENSO forcing on SST autocorrelation varies with season and location with a maximum impact on the correlation magnitude of 0.2–0.3. The winter-to-winter recurrence of higher autocorrelations is caused by entrainment, which generally suppresses SST variability but returns thermal anomalies sequestered beneath the mixed layer in summer back to the surface in the following fall/winter. This reemergence mechanism enhances SST autocorrelation by ∼0.3 at lags of 9–12 months from the previous winter in the western and central Pacific, but only slightly enhances autocorrelation (∼0.1) in the subtropical eastern Pacific. The impact of clouds, ENSO, and entrainment on the autocorrelation structure of the basinwide SST anomaly pattern is similar to that in the western region. ENSO’s impact on the basinwide North Pacific SST autocorrelation in an atmospheric general circulation model coupled to an ocean mixed layer model with observed SSTs specified in the tropical Pacific is very similar to the results from the stochastic model developed here.

2016 ◽  
Vol 46 (1) ◽  
pp. 57-78 ◽  
Author(s):  
Yign Noh ◽  
Hyejin Ok ◽  
Eunjeong Lee ◽  
Takahiro Toyoda ◽  
Naoki Hirose

AbstractThe effect of Langmuir circulation (LC) on vertical mixing is parameterized in the ocean mixed layer model (OMLM), based on the analysis of large-eddy simulation (LES) results. Parameterization of LC effects is carried out in terms of the modifications of the mixing length scale as well as the inclusion of the contribution from the Stokes force in momentum and TKE equations. The performance of the new OMLM is examined by comparing with LES results, together with sensitivity tests for empirical constants used in the parameterization. The new OMLM is then applied to the ocean general circulation model (OGCM) Meteorological Research Institute Community Ocean Model (MRI.COM), and its effect is investigated. The new OMLM helps to correct too shallow mixed layer depths (MLDs) in the high-latitude ocean, which has been a common error in most OGCMs, without making the thermocline in the tropical ocean more diffused. The parameterization of LC effects is found to affect mainly the high-latitude ocean, in which the MLD is shallow in summer and stratification is weak in winter.


2006 ◽  
Vol 63 (10) ◽  
pp. 2585-2601 ◽  
Author(s):  
I. Richter ◽  
C. R. Mechoso

Abstract The impact of South American orography on subtropical stratocumulus clouds off the Peruvian coast is investigated in the context of an atmospheric general circulation model. It is found that stratocumulus incidence is significantly reduced when South American orography is removed. Key to this behavior is a decrease in lower tropospheric stability (LTS) that allows for more frequent stratocumulus destruction through the model’s cloud-top entrainment instability mechanism. The role of orography in enhancing Peruvian stratocumulus is as follows. Within the PBL, orography deflects the midlatitude westerly winds equatorward in association with cold air advection and blocking of the low-level flow from the continent. Above the PBL, the steep and high South American orography deflects a significant portion of the midlatitude westerlies equatorward. This flow sinks along the equatorward sloping isentropes, thus promoting subsidence. Both processes increase LTS over the stratocumulus region. In further AGCM experiments, the sensitivity of Peruvian stratocumulus to the use of unsmoothed orographic boundary conditions is assessed. The results show no significant differences to the control simulation, which uses smoothed orography. This suggests that, in the context of GCMs, a representation of South American orography more detailed than is generally used has little potential for improving the performance of coupled ocean–atmosphere models in the eastern tropical Pacific.


2014 ◽  
Vol 7 (6) ◽  
pp. 7575-7617 ◽  
Author(s):  
A. Molod ◽  
L. Takacs ◽  
M. Suarez ◽  
J. Bacmeister

Abstract. The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the GEOS-5 Atmospheric General Circulation Model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO's MERRA2 reanalysis, the global mesoscale "nature run", the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean–atmosphere and coupled atmosphere–chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of "resolution aware" parameters related to the moist physics were shown to result in improvements at higher resolutions, and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.


2001 ◽  
Vol 58 (4) ◽  
pp. 703-722 ◽  
Author(s):  
S P Haigh ◽  
K L Denman ◽  
W W Hsieh

To investigate the hypothesis that the 1976 "regime shift" in North Pacific fish populations resulted from climatic change propagating up the fisheries food web, we have embedded a four-component planktonic ecosystem model in an ocean general circulation model. The Miami isopycnic model (MICOM) has been implemented on a 2° grid over the domain from 18°S to 61°N, with a Kraus–Turner-type mixed layer model overlaying 10 isopycnal layers. An initial baseline run with forcing for the period 1952–1988 reasonably reproduces the spatial patterns and seasonal changes in SeaWiFS images. Estimates of annual net and export production compare well with contemporary observations of primary and export production at Ocean Station Papa in the subarctic North Pacific but are low by a factor of 8–10 at station ALOHA near Hawaii. Two subsequent runs with forcing for the periods 1952–1975 and 1977–1988 show the main gyres to strengthen after 1976 with large areas of increased mixed layer depth. In the light-limited subarctic, limited areas of shallower spring mixed layer produced increased phytoplankton biomass, whereas in the nutrient-limited subtropical gyre, increased nutrients (or migration of the subarctic front and the equatorial current system into the gyre) after 1976 correlated with increased plankton biomass.


2006 ◽  
Vol 19 (2) ◽  
pp. 300-307 ◽  
Author(s):  
Tomohiko Tomita ◽  
Masami Nonaka

Abstract In the North Pacific, the wintertime sea surface temperature anomaly (SSTA), which is represented by March (SSTAMar), when the upper-ocean mixed layer depth (hMar) reaches its maximum, is formed by the anomalous surface forcing from fall to winter (S′). As a parameter of volume, hMar has a potential to modify the impact of S′ on SSTAMar. Introducing an upper-ocean heat budget equation, the present study identifies the physical relationship among the spatial distributions of hMar, S′, and SSTAMar. The long-term mean of hMar adjusts the spatial distribution of SSTAMar. Without the adjustment, the impact of S′ on SSTAMar is overestimated where the hMar mean is deep. Since hMar is partially due to seawater temperature, it leads to nonlinearity between the S′ and the SSTAMar. When the SSTAMar is negative (positive), the sensitivity to S′ is impervious (responsive) with the deepening (shoaling) of the hMar compared to the linear sensitivity. The thermal impacts from the ocean to the atmosphere might be underestimated under the assumption of the linear relationship.


2020 ◽  
Vol 8 (7) ◽  
pp. 497
Author(s):  
Taekyun Kim ◽  
Jae-Hong Moon

It has been identified that there are several limitations in the Mellor–Yamada (MY) turbulence model applied to the atmospheric mixed layer, and Nakanishi and Niino proposed an improved MY model using a database for large-eddy simulations. The improved MY model (Mellor–Yamada–Nakanishi–Niino model; MYNN model) is popular in atmospheric applications; however, it is rarely used in oceanic applications. In this study, the MY model and the MYNN model are compared to identify the efficiency of the MYNN model incorporated into an ocean general circulation model. To investigate the impact of the improved MY model on the vertical mixing in the oceanic boundary layer, the response of the East/Japan Sea to Typhoon Maemi in 2003 was simulated. After the typhoon event, the sea surface temperature obtained from the MYNN model showed better agreement with the satellite measurements than those obtained from the MY model. The MY model produced an extremely shallow mixed layer, and consequently, the surface temperatures were excessively warm. Furthermore, the near-inertial component of the velocity simulated using the MY model was larger than that simulated using the MYNN model at the surface layer. However, in the MYNN model, the near-inertial waves became larger than those simulated by the MY model at all depths except the surface layer. Comparatively, the MYNN model showed enhanced vertical propagation of the near-inertial activity from the mixed layer into the deep ocean, which results in a temperature decrease at the sea surface and a deepening of the mixed layer.


Sign in / Sign up

Export Citation Format

Share Document