The Detection and Attribution of Climate Change Using an Ensemble of Opportunity

2007 ◽  
Vol 20 (3) ◽  
pp. 504-516 ◽  
Author(s):  
DáithíA. Stone ◽  
Myles R. Allen ◽  
Frank Selten ◽  
Michael Kliphuis ◽  
Peter A. Stott

Abstract The detection and attribution of climate change in the observed record play a central role in synthesizing knowledge of the climate system. Unfortunately, the traditional method for detecting and attributing changes due to multiple forcings requires large numbers of general circulation model (GCM) simulations incorporating different initial conditions and forcing scenarios, and these have only been performed with a small number of GCMs. This paper presents an extension to the fingerprinting technique that permits the inclusion of GCMs in the multisignal analysis of surface temperature even when the required families of ensembles have not been generated. This is achieved by fitting a series of energy balance models (EBMs) to the GCM output in order to estimate the temporal response patterns to the various forcings. This methodology is applied to the very large Challenge ensemble of 62 simulations of historical climate conducted with the NCAR Community Climate System Model version 1.4 (CCSM1.4) GCM, as well as some simulations from other GCMs. Considerable uncertainty exists in the estimates of the parameters in fitted EBMs. Nevertheless, temporal response patterns from these EBMs are more reliable and the combined EBM time series closely mimics the GCM in the context of transient forcing. In particular, detection and attribution results from this technique appear self-consistent and consistent with results from other methods provided that all major forcings are included in the analysis. Using this technique on the Challenge ensemble, the estimated responses to changes in greenhouse gases, tropospheric sulfate aerosols, and stratospheric volcanic aerosols are all detected in the observed record, and the responses to the greenhouse gases and tropospheric sulfate aerosols are both consistent with the observed record without a scaling of the amplitude being required. The result is that the temperature difference of the 1996–2005 decade relative to the 1940–49 decade can be attributed to greenhouse gas emissions, with a partially offsetting cooling from sulfate emissions and little contribution from natural sources. The results support the viability of the new methodology as an extension to current analysis tools for the detection and attribution of climate change, which will allow the inclusion of many more GCMs. Shortcomings remain, however, and so it should not be considered a replacement to traditional techniques.

2015 ◽  
Vol 8 (7) ◽  
pp. 1943-1954 ◽  
Author(s):  
D. R. Feldman ◽  
W. D. Collins ◽  
J. L. Paige

Abstract. Top-of-atmosphere (TOA) spectrally resolved shortwave reflectances and long-wave radiances describe the response of the Earth's surface and atmosphere to feedback processes and human-induced forcings. In order to evaluate proposed long-duration spectral measurements, we have projected 21st Century changes from the Community Climate System Model (CCSM3.0) conducted for the Intergovernmental Panel on Climate Change (IPCC) A2 Emissions Scenario onto shortwave reflectance spectra from 300 to 2500 nm and long-wave radiance spectra from 2000 to 200 cm−1 at 8 nm and 1 cm−1 resolution, respectively. The radiative transfer calculations have been rigorously validated against published standards and produce complementary signals describing the climate system forcings and feedbacks. Additional demonstration experiments were performed with the Model for Interdisciplinary Research on Climate (MIROC5) and Hadley Centre Global Environment Model version 2 Earth System (HadGEM2-ES) models for the Representative Concentration Pathway 8.5 (RCP8.5) scenario. The calculations contain readily distinguishable signatures of low clouds, snow/ice, aerosols, temperature gradients, and water vapour distributions. The goal of this effort is to understand both how climate change alters reflected solar and emitted infrared spectra of the Earth and determine whether spectral measurements enhance our detection and attribution of climate change. This effort also presents a path forward to understand the characteristics of hyperspectral observational records needed to confront models and inline instrument simulation. Such simulation will enable a diverse set of comparisons between model results from coupled model intercomparisons and existing and proposed satellite instrument measurement systems.


MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 229-244
Author(s):  
K. RUPA KUMAR ◽  
R. G. ASHRIT

The regional climatic impacts associated with global climatic change and their assessment are very important since agriculture, water resources, ecology etc., are all vulnerable to climatic changes on regional scale. Coupled Atmosphere-Ocean general circulation model (AOGCM) simulations provide a range of scenarios, which can be used, for the assessment of impacts and development of adaptive or mitigative strategies. Validation of the models against the observations and establishing the sensitivity to climate change forcing are essential before the model projections are used for assessment of possible impacts. Moreover model simulated climate projections are often of coarse resolution while the models used for impact assessment, (e.g. crop simulation models, or river runoff models etc.) operate on a higher spatial resolution. This spatial mismatch can be overcome by adopting an appropriate strategy of downscaling the GCM output.   This study examines two AOGCM (ECHAM4/OPYC3 and HadCM2) climate change simulations for their performance in the simulation of monsoon climate over India and the sensitivity of the simulated monsoon climate to transient changes in the atmospheric concentrations of greenhouse gases and sulfate aerosols. The results show that the two models simulate the gross features of climate over India reasonably well. However the inter-model differences in simulation of mean characteristics, sensitivity to forcing and in the simulation of climate change suggest need for caution. Further an empirical downscaling approach in used to assess the possibility of using GCM projections for preparation of regional climate change scenario for India.


2007 ◽  
Vol 20 (3) ◽  
pp. 517-530 ◽  
Author(s):  
DáithíA. Stone ◽  
Myles R. Allen ◽  
Peter A. Stott

Abstract This paper presents an update on the detection and attribution of global annual mean surface air temperature changes, using recently developed climate models. In particular, it applies a new methodology that permits the inclusion of many more general circulation models (GCMs) into the analysis, and it also includes more recent observations. This methodology involves fitting a series of energy balance models (EBMs) to the GCM output in order to estimate the temporal response patterns to the various forcings. Despite considerable spread in estimated EBM parameters, characteristics of model performance, such as the transient climate response, appear to be more constrained for each of the forcings. The resulting estimated response patterns are provided as input to the standard fingerprinting method used in previous studies. The estimated GCM responses to changes in greenhouse gases are detected in the observed record for all of the GCMs, and are generally found to be consistent with the observed changes; the same is generally true for the responses to changes in stratospheric aerosols from volcanic eruptions. GCM responses to changes in tropospheric sulfate aerosols and solar irradiance also appear consistent with the observed record, although the uncertainty is larger. Greenhouse gas and solar irradiance changes are found to have contributed to a best guess of ∼0.8 and ∼0.3 K warming over the 1901–2005 period, respectively, while sulfate aerosols have contributed a ∼0.4 K cooling. This analysis provides an observationally constrained estimate of future warming, which is found to be fairly robust across GCMs. By 2100, a warming of between about 1.5 and 4.5 K can be expected according to the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B emissions scenario. These results indicate an emerging constraint for global mean surface temperature responses to external forcings across GCMs, which is corroborated in the observed record. This implies that observationally constrained estimates of past warming and predictions of future warming are indeed becoming robust.


2014 ◽  
Vol 7 (3) ◽  
pp. 3647-3670
Author(s):  
D. R. Feldman ◽  
W. D. Collins

Abstract. Top-of-atmosphere spectrally-resolved shortwave reflectances and longwave radiances describe the evolution of the Earth's surface and atmosphere response to feedbacks in and human-induced forcings on the climate system. In order to evaluate proposed long-duration spectral measurements, we have projected 21st century changes described by the Community Climate System Model (CCSM3.0) conducted for the Intergovernmental Panel on Climate Change (IPCC) A2 Emissions Scenario onto shortwave reflectance spectra from 0.3 to 2.5 μm and longwave radiance spectra from 5 to 50 μm at 8 nm and 1 cm−1 resolution, respectively. The radiative transfer calculations have been rigorously validated against published standards and produce complementary signals describing the climate system forcings and feedbacks. Additional demonstration experiments were performed with the MIROC5 and HadGEM2-ES models for the Representative Concentration Pathway 8.5 (RCP8.5) scenario. The calculations contain readily distinguishable signatures of low clouds, snow/ice, aerosols, temperature gradients, and water vapour distributions. The goal of this effort is to understand both how climate change alters the spectrum of the Earth and determine whether spectral measurements enhance our detection and attribution of climate change. This effort also presents a path forward for hyperspectral measurement-model intercomparison by enabling a diverse set of comparisons between model results from coupled model intercomparisons and existing and proposed satellite instrument measurement systems.


2008 ◽  
Vol 5 (3) ◽  
pp. 847-864 ◽  
Author(s):  
P. W. Boyd ◽  
S. C. Doney ◽  
R. Strzepek ◽  
J. Dusenberry ◽  
K. Lindsay ◽  
...  

Abstract. Concurrent changes in ocean chemical and physical properties influence phytoplankton dynamics via alterations in carbonate chemistry, nutrient and trace metal inventories and upper ocean light environment. Using a fully coupled, global carbon-climate model (Climate System Model 1.4-carbon), we quantify anthropogenic climate change relative to the background natural interannual variability for the Southern Ocean over the period 2000 and 2100. Model results are interpreted using our understanding of the environmental control of phytoplankton growth rates – leading to two major findings. Firstly, comparison with results from phytoplankton perturbation experiments, in which environmental properties have been altered for key species (e.g., bloom formers), indicates that the predicted rates of change in oceanic properties over the next few decades are too subtle to be represented experimentally at present. Secondly, the rate of secular climate change will not exceed background natural variability, on seasonal to interannual time-scales, for at least several decades – which may not provide the prevailing conditions of change, i.e. constancy, needed for phytoplankton adaptation. Taken together, the relatively subtle environmental changes, due to climate change, may result in adaptation by resident phytoplankton, but not for several decades due to the confounding effects of climate variability. This presents major challenges for the detection and attribution of climate change effects on Southern Ocean phytoplankton. We advocate the development of multi-faceted tests/metrics that will reflect the relative plasticity of different phytoplankton functional groups and/or species to respond to changing ocean conditions.


Author(s):  
Paul D. Williams ◽  
Michael J. P. Cullen ◽  
Michael K. Davey ◽  
John M. Huthnance

The societal need for reliable climate predictions and a proper assessment of their uncertainties is pressing. Uncertainties arise not only from initial conditions and forcing scenarios, but also from model formulation. Here, we identify and document three broad classes of problems, each representing what we regard to be an outstanding challenge in the area of mathematics applied to the climate system. First, there is the problem of the development and evaluation of simple physically based models of the global climate. Second, there is the problem of the development and evaluation of the components of complex models such as general circulation models. Third, there is the problem of the development and evaluation of appropriate statistical frameworks. We discuss these problems in turn, emphasizing the recent progress made by the papers presented in this Theme Issue. Many pressing challenges in climate science require closer collaboration between climate scientists, mathematicians and statisticians. We hope the papers contained in this Theme Issue will act as inspiration for such collaborations and for setting future research directions.


Author(s):  
Victor Galaz

Climate change is increasingly being framed as a “climate crisis.” Such a crisis could be viewed both to unfold in the climate system, as well as to be induced by it in diverse areas of society. Following from current understandings of modern crises, it is clear that climate change indeed can be defined as a “crisis.” As the Intergovernmental Panel on Climate Change 1.5oC special report elaborates, the repercussions of a warming planet include increased food insecurity, increased frequency and intensity of severe droughts, extreme heat waves, the loss of coral reef ecosystems and associated marine species, and more. It is also important to note that a range of possible climate-induced crises (through, e.g., possible increased food insecurity and weather extremes) will not be distributed evenly, but will instead disproportionally affect already vulnerable social groups, communities, and countries in detrimental ways. The multifaceted dimensions of climate change allow for multiple interpretations and framings of “climate crisis,” thereby forcing us to acknowledge the deeply contextual nature of what is understood as a “crisis.” Climate change and its associated crises display a number of challenging properties that stem from its connections to basically all sectors in society, its propensity to induce and in itself embed nonlinear changes such as “tipping points” and cascading shocks, and its unique and challenging long-term temporal dimensions. The latter pose particularly difficult decision-making and institutional challenges because initial conditions (in this case, carbon dioxide emissions) do not result in immediate or proportional responses (say, global temperature anomalies), but instead play out through feedbacks among the climate system, oceans, the cryosphere, and changes in forest biomes, with some considerable delays in time. Additional challenges emerge from the fact that early warnings of pending so-called “catastrophic shifts” face numerous obstacles, and that early responses are undermined by a lack of knowledge, complex causality, and severe coordination challenges.


2009 ◽  
Vol 22 (13) ◽  
pp. 3838-3855 ◽  
Author(s):  
H. G. Hidalgo ◽  
T. Das ◽  
M. D. Dettinger ◽  
D. R. Cayan ◽  
D. W. Pierce ◽  
...  

Abstract This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow “center” timing (the day in the “water-year” on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States—the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier “center” timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p < 0.05 level). Furthermore, the nonnatural parts of these changes can be attributed confidently to climate changes induced by anthropogenic greenhouse gases, aerosols, ozone, and land use. The signal from the Columbia dominates the analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States.


2011 ◽  
Vol 24 (17) ◽  
pp. 4741-4756 ◽  
Author(s):  
Weilin Chen ◽  
Zhihong Jiang ◽  
Laurent Li

Probabilistic projection of climate change consists of formulating the climate change information in a probabilistic manner at either global or regional scale. This can produce useful results for studies of the impact of climate change impact and change mitigation. In the present study, a simple yet effective approach is proposed with the purpose of producing probabilistic results of climate change over China for the middle and end of the twenty-first century under the Special Report on Emissions Scenarios A1B (SRES A1B) emission scenario. Data from 28 coupled atmosphere–ocean general circulation models (AOGCMs) are used. The methodology consists of ranking the 28 models, based on their ability to simulate climate over China in terms of two model evaluation metrics. Different weights were then given to the models according to their performances in present-day climate. Results of the evaluation for the current climate show that five models that have relatively higher resolutions—namely, the Istituto Nazionale di Geofisica e Vulcanologia ECHAM4 (INGV ECHAM4), the third climate configuration of the Met Office Unified Model (UKMO HadCM3), the CSIRO Mark version 3.5 (Mk3.5), the NCAR Community Climate System Model, version 3 (CCSM3), and the Model for Interdisciplinary Research on Climate 3.2, high-resolution version [MIROC3.2 (hires)]—perform better than others over China. Their corresponding weights (normalized to 1) are 0.289, 0.096, 0.058, 0.048, and 0.044, respectively. Under the A1B scenario, surface air temperature is projected to increase significantly for both the middle and end of the twenty-first century, with larger magnitude over the north and in winter. There are also significant increases in rainfall in the twenty-first century under the A1B scenario, especially for the period 2070–99. As far as the interannual variability is concerned, the most striking feature is that there are high probabilities for the future intensification of interannual variability of precipitation over most of China in both winter and summer. For instance, over the Yangtze–Huai River basin (28°–35°N, 105°–120°E), there is a 60% probability of increased interannual standard deviation of precipitation by 20% in summer, which is much higher than that of the mean precipitation. In general there are small differences between weighted and unweighted projections, but the uncertainties in the projected changes are reduced to some extent after weighting.


2011 ◽  
Vol 4 (2) ◽  
pp. 483-509 ◽  
Author(s):  
S. J. Phipps ◽  
L. D. Rotstayn ◽  
H. B. Gordon ◽  
J. L. Roberts ◽  
A. C. Hirst ◽  
...  

Abstract. The CSIRO Mk3L climate system model is a coupled general circulation model, designed primarily for millennial-scale climate simulations and palaeoclimate research. Mk3L includes components which describe the atmosphere, ocean, sea ice and land surface, and combines computational efficiency with a stable and realistic control climatology. This paper describes the model physics and software, analyses the control climatology, and evaluates the ability of the model to simulate the modern climate. Mk3L incorporates a spectral atmospheric general circulation model, a z-coordinate ocean general circulation model, a dynamic-thermodynamic sea ice model and a land surface scheme with static vegetation. The source code is highly portable, and has no dependence upon proprietary software. The model distribution is freely available to the research community. A 1000-yr climate simulation can be completed in around one-and-a-half months on a typical desktop computer, with greater throughput being possible on high-performance computing facilities. Mk3L produces realistic simulations of the larger-scale features of the modern climate, although with some biases on the regional scale. The model also produces reasonable representations of the leading modes of internal climate variability in both the tropics and extratropics. The control state of the model exhibits a high degree of stability, with only a weak cooling trend on millennial timescales. Ongoing development work aims to improve the model climatology and transform Mk3L into a comprehensive earth system model.


Sign in / Sign up

Export Citation Format

Share Document