Moist Teleconnection Mechanisms for the Tropical South American and Atlantic Sector*

2005 ◽  
Vol 18 (18) ◽  
pp. 3928-3950 ◽  
Author(s):  
J. David Neelin ◽  
Hui Su

Abstract Teleconnections have traditionally been studied for the case of dry dynamical response to a given diabatic heat source. Important anomalies often occur within convective zones, for instance, in the observed remote response to El Niño. The reduction of rainfall and teleconnection propagation in deep convective regions poses theoretical challenges because feedbacks involving convective heating and cloud radiative effects come into play. Land surface feedbacks, including variations of land surface temperature, and ocean surface layer temperature response must be taken into account. During El Niño, descent and negative precipitation anomalies often extend across equatorial South America and the Atlantic intertropical convergence zone. Analysis of simulated mechanisms in a case study of the 1997/98 El Niño is used to illustrate the general principals of teleconnections occurring in deep convective zones, contrasting land and ocean regions. Comparison to other simulated events shows similar behavior. Tropospheric temperature and wind anomalies are spread eastward by wave dynamics modified by interaction with the moist convection zones. The traditional picture would have gradual descent balanced by radiative damping, but this scenario misses the most important balances in the moist static energy (MSE) budget. A small “zoo” of mechanisms is active in producing strong regional descent anomalies and associated drought. Factors common to several mechanisms include the role of convective quasi equilibrium (QE) in linking low-level moisture anomalies to free tropospheric temperature anomalies in a two-way interaction referred to as QE mediation. Convective heating feedbacks change the net static stability to a gross moist stability (GMS) M. The large cloud radiative feedback terms may be manipulated to appear as a modified static stability Meff, under approximations that are quantified for the quasi-equilibrium tropical circulation model used here. The relevant measure of Meff differs between land, where surface energy flux balance applies, and short time scales over ocean. For the time scale of an onsetting El Niño, a mixed layer ocean response is similar to a fixed sea surface temperature (SST) case, with surface fluxes lost into the ocean and Meff substantially reduced over ocean-enhancing descent anomalies. Use of Meff aids analysis of terms that act as the initiators of descent anomalies. Apparently modest terms in the MSE budget can be acted on by the GMS multiplier effect, which yields substantial precipitation anomalies due to the large ratio of the moisture convergence to the MSE divergence. Advection terms enter in several mechanisms, with the leading effects here due to advection by mean winds in both MSE and momentum balances. A Kelvinoid solution is presented as a prototype for how easterly flow enhances moist wave decay mechanisms, permitting relatively small damping terms by surface drag and radiative damping to produce the substantial eastward temperature gradients seen in observations and simulations and contributing to precipitation anomalies. The leading mechanism for drought in eastern equatorial South America is the upped-ante mechanism in which QE mediation of teleconnected tropospheric temperature anomalies tends to produce moisture gradients between the convection zone, where low-level moisture increases toward QE, and the neighboring nonconvective region. Over the Atlantic ITCZ, the upped-ante mechanism is a substantial contributor, but on short time scales several mechanisms referred to jointly as troposphere/SST disequilibrium mechanisms are important. While SST is adjusting during passive SST (coupled ocean mixed layer) experiments, or for fixed SST, heat flux to the ocean is lost to the atmosphere, and these mechanisms can induce descent and precipitation anomalies, although they disappear when SST equilibrates. In simulations here, cloud radiative feedbacks, surface heat fluxes induced by teleconnected wind anomalies, and surface fluxes induced by QE-mediated temperature anomalies are significant disequilibrium contributors. At time scales of several months or longer, remaining Atlantic ITCZ rainfall reductions are maintained by the upped-ante mechanism.

2003 ◽  
Vol 16 (9) ◽  
pp. 1283-1301 ◽  
Author(s):  
Hui Su ◽  
J. David Neelin ◽  
Joyce E. Meyerson

Abstract During El Niño, there are substantial tropospheric temperature anomalies across the entire tropical belt associated with the warming of sea surface temperatures (SSTs) in the central and eastern Pacific. The quasi-equilibrium tropical circulation model (QTCM) is used to investigate the mechanisms for tropical tropospheric temperature response to SST forcing. In both observations and model simulations, the tropical averaged tropospheric temperature anomaly 〈T̂′〉 is approximately linear with the tropical mean SST anomaly 〈T′s〉 for observed SST forcing. Regional SST anomaly experiments are used to estimate regional sensitivity measures and quantify the degree of nonlinearity. For instance, SST anomalies of 3°C in the central Pacific would give a nonlinear 〈T̂′〉 response about 15% greater than a linear fit to small SST anomaly experiments would predict, but for the maximum observed SST anomaly in this region the response differs by only 5% from linearity. Nonlinearity in 〈T̂′〉 response is modest even when local precipitation response is highly nonlinear. While temperature anomalies have large spatial scales, the main precipitation anomaly tends to be local to the SST anomaly regions. The tropical averaged precipitation anomalies 〈P′〉 do not necessarily have a simple relation to tropical averaged tropospheric temperature anomalies or SST forcing. The approximate linearity of the 〈T̂′〉 response is due to two factors: 1) the strong nonlinearities that occur locally tend to be associated with the transport terms, which become small in the large-area average; and 2) the dependence on temperature of the top-of-atmosphere and surface fluxes has only weak nonlinearity over the range of 〈T̂′〉 variations. Analytical approximations to the QTCM suggest that the direct impact of climatological SST, via flux terms, contributes modestly to regional variations in the sensitivity α of 〈T̂′〉 to 〈T′s〉. Wind speed has a fairly strong effect on α but tends to oppose the direct effect of SST since cold SST regions often have stronger climatological wind, which would yield larger slopes. A substantial contribution to regional variation in α comes from the different reaction of moisture to SST anomalies in precipitating and nonprecipitating regions. Although regions over climatologically warm water have a slightly higher sensitivity, subregions of El Niño SST anomalies even in the colder eastern Pacific contribute substantially to tropospheric temperature anomalies.


2007 ◽  
Vol 20 (14) ◽  
pp. 3411-3433 ◽  
Author(s):  
Chia Chou ◽  
Min-Hui Lo

Abstract In response to the zonally symmetric El Niño–Southern Oscillation forcing, hemispherically asymmetric tropical precipitation anomalies associated with the Hadley circulation are found. In boreal spring after an El Niño peak phase, positive tropical precipitation anomalies occur in the Southern Hemisphere, while negative precipitation anomalies are found in the Northern Hemisphere. This zonal asymmetry is more apparent in the El Niño decaying phase than in the El Niño growing phase. The maximum amplitude of this zonal asymmetry lags one season behind the maximum SST anomalies over the tropical eastern Pacific. This lagged response of the asymmetry is mainly because of the tropical precipitation outside the tropical eastern Pacific, which is associated with the SST and tropospheric temperature anomalies outside the tropical eastern Pacific. A combination of the effect associated with the anomalous gross moist stability and the effect of the horizontal moist static energy (MSE) transport is responsible for the asymmetry. The above effects are associated with the seasonal migration of the Hadley circulation. Warm SST and tropospheric temperature anomalies increase the low-level moisture in the Tropics. In the effect associated with anomalous gross moist stability, the tropical precipitation over the ascending branch of the Hadley circulation is enhanced because of the decrease of effective moist stability, which is induced by the increase of low-level moisture. This enhancement associated with the Hadley circulation reduces the low-level moisture over the descending branch and creates a meridional moisture gradient. In the effect of the horizontal MSE transport, the tropical precipitation anomalies over margins of the ascending branch is reduced by dry advection from the descending branch, which is associated with mean Hadley circulation.


2005 ◽  
Vol 18 (24) ◽  
pp. 5312-5329 ◽  
Author(s):  
Benjamin R. Lintner ◽  
John C. H. Chiang

Abstract The applicability of a weak temperature gradient (WTG) formulation for the reorganization of tropical climate during El Niño–Southern Oscillation (ENSO) events is investigated. This idealized dynamical framework solves for the divergent portion of the tropical circulation by assuming a spatially homogeneous perturbation temperature profile and a mass balance constraint applied over the tropical belt. An intermediate-level complexity model [the Quasi-Equilibrium Tropical Circulation Model (QTCM)] configured with the WTG assumptions is used to simulate El Niño conditions and is found to yield an appropriate level of tropospheric warming, a plausible pattern of precipitation anomalies in the tropical Pacific source region of El Niño, and a gross precipitation deficit over the Tropics outside the Pacific (hereafter the “remote Tropics”). Additional tests of the WTG framework with La Niña forcing conditions and enhanced greenhouse gas concentrations support its applicability. However, the ENSO response under the WTG framework fails in some respects when compared to the standard QTCM: in particular, some regional features of the anomalous precipitation response, especially in the remote Tropics, differ markedly between the two model versions. These discrepancies appear to originate in part from the lack of anomalous tropospheric temperature gradients (and circulations) in the framework presented here. Nevertheless, the WTG approach appears to be a useful lowest-order model for the tropical climate adjustment to ENSO. The WTG framework is also used to argue that El Niño may not represent a good proxy for tropical rainfall changes under greenhouse gas warming scenarios because the large-scale subsidence occurring with the tropospheric warming in the El Niño scenario has an effect on rainfall that is distinct from the effect of increased tropospheric temperatures common to both the greenhouse gas warming and El Niño scenarios.


2012 ◽  
Vol 25 (10) ◽  
pp. 3549-3565 ◽  
Author(s):  
Michael A. Alexander ◽  
Hyodae Seo ◽  
Shang Ping Xie ◽  
James D. Scott

Abstract The recently released NCEP Climate Forecast System Reanalysis (CFSR) is used to examine the response to ENSO in the northeast tropical Pacific Ocean (NETP) during 1979–2009. The normally cool Pacific sea surface temperatures (SSTs) associated with wind jets through the gaps in the Central American mountains at Tehuantepec, Papagayo, and Panama are substantially warmer (colder) than the surrounding ocean during El Niño (La Niña) events. Ocean dynamics generate the ENSO-related SST anomalies in the gap wind regions as the surface fluxes damp the SSTs anomalies, while the Ekman heat transport is generally in quadrature with the anomalies. The ENSO-driven warming is associated with large-scale deepening of the thermocline; with the cold thermocline water at greater depths during El Niño in the NETP, it is less likely to be vertically mixed to the surface, particularly in the gap wind regions where the thermocline is normally very close to the surface. The thermocline deepening is enhanced to the south of the Costa Rica Dome in the Papagayo region, which contributes to the local ENSO-driven SST anomalies. The NETP thermocline changes are due to coastal Kelvin waves that initiate westward-propagating Rossby waves, and possibly ocean eddies, rather than by local Ekman pumping. These findings were confirmed with regional ocean model experiments: only integrations that included interannually varying ocean boundary conditions were able to simulate the thermocline deepening and localized warming in the NETP during El Niño events; the simulation with variable surface fluxes, but boundary conditions that repeated the seasonal cycle, did not.


2021 ◽  
pp. 1-43
Author(s):  
Jonathan D. Beverley ◽  
Matthew Collins ◽  
F. Hugo Lambert ◽  
Robin Chadwick

AbstractThe El Niño-Southern Oscillation (ENSO) is the leading mode of interannual climate variability and it exerts a strong influence on many remote regions of the world, for example in northern North America. Here, we examine future changes to the positive-phase ENSO teleconnection to the North Pacific/North America sector and investigate the mechanisms involved. We find that the positive temperature anomalies over Alaska and northern North America that are associated with an El Niño event in the present day are much weaker, or of the opposite sign, in the CMIP6 abrupt 4×CO2 experiments for almost all models (22 out of 26, of which 15 are statistically significant differences). This is largely related to changes to the anomalous circulation over the North Pacific, rather than differences in the equator-to-pole temperature gradient. Using a barotropic model, run with different background circulation basic states and Rossby wave source forcing patterns from the individual CMIP6 models, we find that changes to the forcing from the equatorial central Pacific precipitation anomalies are more important than changes in the global basic state background circulation. By further decomposing this forcing change into changes associated with the longitude and magnitude of ENSO precipitation anomalies, we demonstrate that the projected overall eastward shift of ENSO precipitation is the main driver of the temperature teleconnection change, rather than the increase in magnitude of El Niño precipitation anomalies which are, nevertheless, seen in the majority of models.


2018 ◽  
Vol 32 (1) ◽  
pp. 213-230 ◽  
Author(s):  
Chao He ◽  
Tianjun Zhou ◽  
Tim Li

Abstract The western North Pacific subtropical anticyclone (WNPAC) is the most prominent atmospheric circulation anomaly over the subtropical Northern Hemisphere during the decaying summer of an El Niño event. Based on a comparison between the RCP8.5 and the historical experiments of 30 coupled models from the CMIP5, we show evidence that the anomalous WNPAC during the El Niño–decaying summer is weaker in a warmer climate although the amplitude of the El Niño remains generally unchanged. The weakened impact of the sea surface temperature anomaly (SSTA) over the tropical Indian Ocean (TIO) on the atmosphere is essential for the weakened anomalous WNPAC. In a warmer climate, the warm tropospheric temperature (TT) anomaly in the tropical free troposphere stimulated by the El Niño–related SSTA is enhanced through stronger moist adiabatic adjustment in a warmer mean state, even if the SSTA of El Niño is unchanged. But the amplitude of the warm SSTA over TIO remains generally unchanged in an El Niño–decaying summer, the static stability of the boundary layer over TIO is increased, and the positive rainfall anomaly over TIO is weakened. As a result, the warm Kelvin wave emanating from TIO is weakened because of a weaker latent heating anomaly over TIO, which is responsible for the weakened WNPAC anomaly. Numerical experiments support the weakened sensitivity of precipitation anomaly over TIO to local SSTA under an increase of mean-state SST and its essential role in the weakened anomalous WNPAC, independent of any change in the SSTA.


2018 ◽  
Vol 31 (2) ◽  
pp. 693-725 ◽  
Author(s):  
Dimitrios Giannakis ◽  
Joanna Slawinska

The coupled atmosphere–ocean variability of the Indo-Pacific domain on seasonal to multidecadal time scales is investigated in CCSM4 and in observations through nonlinear Laplacian spectral analysis (NLSA). It is found that ENSO modes and combination modes of ENSO with the annual cycle exhibit a seasonally synchronized southward shift of equatorial surface zonal winds and thermocline adjustment consistent with terminating El Niño and La Niña events. The surface winds associated with these modes also generate teleconnections between the Pacific and Indian Oceans, leading to SST anomalies characteristic of the Indian Ocean dipole. The family of NLSA ENSO modes is used to study El Niño–La Niña asymmetries, and it is found that a group of secondary ENSO modes with more rapidly decorrelating temporal patterns contributes significantly to positively skewed SST and zonal wind statistics. Besides ENSO, fundamental and combination modes representing the tropospheric biennial oscillation (TBO) are found to be consistent with mechanisms for seasonally synchronized biennial variability of the Asian–Australian monsoon and Walker circulation. On longer time scales, a multidecadal pattern referred to as the west Pacific multidecadal mode (WPMM) is established to significantly modulate ENSO and TBO activity, with periods of negative SST anomalies in the western tropical Pacific favoring stronger ENSO and TBO variability. This behavior is attributed to the fact that cold WPMM phases feature anomalous decadal westerlies in the tropical central Pacific, as well as an anomalously flat zonal thermocline profile in the equatorial Pacific. Moreover, the WPMM is found to correlate significantly with decadal precipitation over Australia.


Sign in / Sign up

Export Citation Format

Share Document