scholarly journals Meteorological Causes of the Secular Variations in Observed Extreme Precipitation Events for the Conterminous United States

2012 ◽  
Vol 13 (3) ◽  
pp. 1131-1141 ◽  
Author(s):  
Kenneth E. Kunkel ◽  
David R. Easterling ◽  
David A. R. Kristovich ◽  
Byron Gleason ◽  
Leslie Stoecker ◽  
...  

Abstract Daily extreme precipitation events, exceeding a threshold for a 1-in-5-yr occurrence, were identified from a network of 935 Cooperative Observer stations for the period of 1908–2009. Each event was assigned a meteorological cause, categorized as extratropical cyclone near a front (FRT), extratropical cyclone near center of low (ETC), tropical cyclone (TC), mesoscale convective system (MCS), air mass (isolated) convection (AMC), North American monsoon (NAM), and upslope flow (USF). The percentage of events ascribed to each cause were 54% for FRT, 24% for ETC, 13% for TC, 5% for MCS, 3% for NAM, 1% for AMC, and 0.1% for USF. On a national scale, there are upward trends in events associated with fronts and tropical cyclones, but no trends for other meteorological causes. On a regional scale, statistically significant upward trends in the frontal category are found in five of the nine regions. For ETCs, there are statistically significant upward trends in the Northeast and east north central. For the NAM category, the trend in the West is upward. The central region has seen an upward trend in events caused by TCs.

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 79 ◽  
Author(s):  
Stefano Segadelli ◽  
Federico Grazzini ◽  
Michele Adorni ◽  
Maria Teresa De Nardo ◽  
Anna Fornasiero ◽  
...  

In 2015 an intense rainfall event hit the Valleys of the Trebbia, Nure, and Aveto watercourses in the Northern Apennines. In about 6 h a mesoscale convective system deployed a stunning amount of precipitation of 340 mm, with an extreme hourly rainfall intensity of >100 mm/h. It triggered debris flows along slopes and stream channels, landslides and floods, which caused serious damages. Through the optimal combination of rainfall data and radar volumes, in this work we present a detailed rainfall analysis, which will serve as a basis to create a quantitative correlation with debris flows over elementary hydrological units. We aim at providing an objective basis for future predictions, starting from the recognition of the forcing meteorological events, and then arriving at the prediction of triggering phenomena and to the debris-flow type. We further provide seven observations/case studies on the effects of extreme-precipitation events on freshwater environments in small mountain catchments. Extreme-precipitation events are becoming more frequent and widespread globally but their ecological effects are still insufficiently understood. In general, the effects of extreme events on inland-waters’ ecosystems are highly context-dependent, ranging from deleterious to beneficial. We therefore highlight the necessity of further studies to characterize these effects in more depth to be able to include appropriate mitigation measures in environmental planning and stewardship.


2016 ◽  
Vol 144 (1) ◽  
pp. 347-369 ◽  
Author(s):  
Yannick Barton ◽  
Paraskevi Giannakaki ◽  
Harald von Waldow ◽  
Clément Chevalier ◽  
Stephan Pfahl ◽  
...  

Abstract Temporal clustering of extreme precipitation events on subseasonal time scales is of crucial importance for the formation of large-scale flood events. Here, the temporal clustering of regional-scale extreme precipitation events in southern Switzerland is studied. These precipitation events are relevant for the flooding of lakes in southern Switzerland and northern Italy. This research determines whether temporal clustering is present and then identifies the dynamics that are responsible for the clustering. An observation-based gridded precipitation dataset of Swiss daily rainfall sums and ECMWF reanalysis datasets are used. Also used is a modified version of Ripley’s K function, which determines the average number of extreme events in a time period, to characterize temporal clustering on subseasonal time scales and to determine the statistical significance of the clustering. Significant clustering of regional-scale precipitation extremes is found on subseasonal time scales during the fall season. Four high-impact clustering episodes are then selected and the dynamics responsible for the clustering are examined. During the four clustering episodes, all heavy precipitation events were associated with an upper-level breaking Rossby wave over western Europe and in most cases strong diabatic processes upstream over the Atlantic played a role in the amplification of these breaking waves. Atmospheric blocking downstream over eastern Europe supported this wave breaking during two of the clustering episodes. During one of the clustering periods, several extratropical transitions of tropical cyclones in the Atlantic contributed to the formation of high-amplitude ridges over the Atlantic basin and downstream wave breaking. During another event, blocking over Alaska assisted the phase locking of the Rossby waves downstream over the Atlantic.


2020 ◽  
Vol 12 (4) ◽  
pp. 1415
Author(s):  
Runze Tong ◽  
Wenchao Sun ◽  
Quan Han ◽  
Jingshan Yu ◽  
Zaifeng Tian

Extreme weather events can cause a lot of damage in highly populated regions, such as in the Beijing–Tianjin–Hebei Region (BTHR) in northern China. To understand where and how extreme precipitation and temperature events are changing within the BTHR, data for 1959–2018 from 25 mereological stations were used to detect trends in the intensity, frequency, and duration of these events. The results showed that intensity, accumulated amount, the duration of extreme precipitation events, and the annual number of days with precipitation greater than 50 mm decreased on a regional scale over this 60-year period. Changes in extreme precipitation events at most stations were not statistically significant, although a few stations had a significant downward trend. The combined effects of the East Asian summer monsoon and rapid urbanization are possible reasons for these trends. Both the annual maximum and minimum temperature increased on a regional and local scale. The frequency of extreme hot and cold weather also, respectively, increased and decreased, with consistent patterns on a regional and local scale. However, the spatial changes of these trends were different, reflecting the effects of irrigation and urbanization on the regional surface energy balance. These findings are valuable to decisionmakers involved in disaster prevention in the BTHR and in other highly populated regions worldwide.


2021 ◽  
Author(s):  
Alexandra Berényi ◽  
Rita Pongrácz ◽  
Judit Bartholy

<p>The effects of climate change on precipitation patterns can be observed on global scale, however, global climate change affects different regions more or less severely. Because of the high variability of precipitation in particular, future changes related to precipitation can be very different, even opposite on continental/regional scale. Even within Europe, the detected trends in precipitation patterns and extremes differ across the continent. According to climate model simulations for the future, Northern Europe is projected to become wetter, while the southern parts of the continent will tend to become drier by the end of the 21st century. The frequency and intensity of extreme precipitation will also increase in the whole continent. The possible shifts in precipitation patterns from wetter to drier conditions with fewer but increased extreme precipitation events can cause severe natural hazards, such as extended drought periods, water scarcity, floods and flash floods, therefore appropriate risk management is essential. For this purpose the analysis of possible hazards associated to specific precipitation-related weather phenomena is necessary and serves as key input.</p><p>Since plain regions play an important role in agricultural economy and are more exposed to floods because of their geographic features and the gravitational movement of surface water, our primary goal was to examine temporal and spatial changes in extreme precipitation events and dry spells in three European lowlands, located in the southern part of the continent. We selected the following regions: the Po-Valley located in Italy with humid subtropical climate; the Romanian Plain in Romania, and the Pannonian Plain covering different parts of Hungary, Serbia, Slovakia, Croatia, Romania and Ukraine with humid continental climatic conditions.</p><p>Precipitation time series were used from the E-OBS v.22 dataset on a 0.1° regular grid. The dataset is based on station measurements from Europe and are available from 1950 onward with daily temporal resolution. For the analysis of main precipitation patterns, dry spells and extreme events, we use 17 climate indices (most of them are defined by the Expert Team on Climate Change Detection and Indices, ECCDI). The analysis focuses on annual and seasonal changes in the three regions. The selected indices are capable to represent the differences and similarities between and within the plains. Our preliminary results show that the occurrence and intensity of extreme precipitation events increased in all regions, while the trends of duration and frequency of dry spells show both intra- and inter regional variability across the plains.</p>


Ecology ◽  
2021 ◽  
Author(s):  
Alison K. Post ◽  
Kristin P. Davis ◽  
Jillian LaRoe ◽  
David L. Hoover ◽  
Alan K. Knapp

2017 ◽  
Vol 145 (6) ◽  
pp. 2257-2279 ◽  
Author(s):  
Bryan J. Putnam ◽  
Ming Xue ◽  
Youngsun Jung ◽  
Nathan A. Snook ◽  
Guifu Zhang

Abstract Ensemble-based probabilistic forecasts are performed for a mesoscale convective system (MCS) that occurred over Oklahoma on 8–9 May 2007, initialized from ensemble Kalman filter analyses using multinetwork radar data and different microphysics schemes. Two experiments are conducted, using either a single-moment or double-moment microphysics scheme during the 1-h-long assimilation period and in subsequent 3-h ensemble forecasts. Qualitative and quantitative verifications are performed on the ensemble forecasts, including probabilistic skill scores. The predicted dual-polarization (dual-pol) radar variables and their probabilistic forecasts are also evaluated against available dual-pol radar observations, and discussed in relation to predicted microphysical states and structures. Evaluation of predicted reflectivity (Z) fields shows that the double-moment ensemble predicts the precipitation coverage of the leading convective line and stratiform precipitation regions of the MCS with higher probabilities throughout the forecast period compared to the single-moment ensemble. In terms of the simulated differential reflectivity (ZDR) and specific differential phase (KDP) fields, the double-moment ensemble compares more realistically to the observations and better distinguishes the stratiform and convective precipitation regions. The ZDR from individual ensemble members indicates better raindrop size sorting along the leading convective line in the double-moment ensemble. Various commonly used ensemble forecast verification methods are examined for the prediction of dual-pol variables. The results demonstrate the challenges associated with verifying predicted dual-pol fields that can vary significantly in value over small distances. Several microphysics biases are noted with the help of simulated dual-pol variables, such as substantial overprediction of KDP values in the single-moment ensemble.


Sign in / Sign up

Export Citation Format

Share Document