scholarly journals Spatial and Temporal Variations in Extreme Precipitation and Temperature Events in the Beijing–Tianjin–Hebei Region of China over the Past Six Decades

2020 ◽  
Vol 12 (4) ◽  
pp. 1415
Author(s):  
Runze Tong ◽  
Wenchao Sun ◽  
Quan Han ◽  
Jingshan Yu ◽  
Zaifeng Tian

Extreme weather events can cause a lot of damage in highly populated regions, such as in the Beijing–Tianjin–Hebei Region (BTHR) in northern China. To understand where and how extreme precipitation and temperature events are changing within the BTHR, data for 1959–2018 from 25 mereological stations were used to detect trends in the intensity, frequency, and duration of these events. The results showed that intensity, accumulated amount, the duration of extreme precipitation events, and the annual number of days with precipitation greater than 50 mm decreased on a regional scale over this 60-year period. Changes in extreme precipitation events at most stations were not statistically significant, although a few stations had a significant downward trend. The combined effects of the East Asian summer monsoon and rapid urbanization are possible reasons for these trends. Both the annual maximum and minimum temperature increased on a regional and local scale. The frequency of extreme hot and cold weather also, respectively, increased and decreased, with consistent patterns on a regional and local scale. However, the spatial changes of these trends were different, reflecting the effects of irrigation and urbanization on the regional surface energy balance. These findings are valuable to decisionmakers involved in disaster prevention in the BTHR and in other highly populated regions worldwide.

2018 ◽  
Vol 31 (22) ◽  
pp. 9087-9105 ◽  
Author(s):  
Lejiang Yu ◽  
Qinghua Yang ◽  
Timo Vihma ◽  
Svetlana Jagovkina ◽  
Jiping Liu ◽  
...  

Observed daily precipitation data were used to investigate the characteristics of precipitation at Antarctic Progress Station and synoptic patterns associated with extreme precipitation events during the period 2003–16. The annual precipitation, annual number of extreme precipitation events, and amount of precipitation during the extreme events have positive trends. The distribution of precipitation at Progress Station is heavily skewed with a long tail of extreme dry days and a high peak of extreme wet days. The synoptic pattern associated with extreme precipitation events is a dipole structure of negative and positive height anomalies to the west and east of Progress Station, respectively, resulting in water vapor advection to the station. For the first time, we apply self-organizing maps (SOMs) to examine thermodynamic and dynamic perspectives of trends in the frequency of occurrence of Antarctic extreme precipitation events. The changes in thermodynamic (noncirculation) processes explain 80% of the trend, followed by the changes in the interaction between thermodynamic and dynamic processes, which account for nearly 25% of the trend. The changes in dynamic processes make a negative (less than 5%) contribution to the trend. The positive trend in total column water vapor over the Southern Ocean explains the change of thermodynamic term.


2018 ◽  
Vol 17 (1) ◽  
pp. 38-46
Author(s):  
Sanjeevan Shrestha ◽  
Tina Baidar

Climate change, particularly at South Asia region is having a huge impact on precipitation patterns, its intensity and extremeness. Mountainous area is much sensitive to these extreme events, hence having adverse effect on environment as well as people in term of fluctuation in water supply as well as frequent extreme weather events such as flood, landslide etc. So, prediction of extreme precipitation is imperative for proper management. The objective of this study was to assess the spatial distribution and temporal change of extreme precipitation events on Koshi basin of Nepal during 1980-2010. Five indicators (R1day, R5 day, R > 25.4 mm, SDII and CDD) were chosen for 41 meteorological stations to test the extreme events. Inverse distance weighting and kriging interpolation technique was used to interpolate the spatial patterns. Result showed that most extreme precipitation events increased up to mountain regions from low river valley; and then it decreased subsequently up to Himalayan regions (south to north direction). However, there is high value of indices for lowland Terai valley also. Most of the indices have hotspot with higher value at north western and southern part of the study area. For temporal change, most of the extreme precipitation indices showed increasing trend within 30 years’ period. The spatial distribution of temporal change in indices suggests that there is increasing trend in lowland area and decreasing trend in mountainous and Himalayan area. So, adaptive measure should be adopted through proper land use planning, especially at those hotspot areas and their tributaries; to reduce adverse effect of extreme precipitation events.


2012 ◽  
Vol 13 (3) ◽  
pp. 1131-1141 ◽  
Author(s):  
Kenneth E. Kunkel ◽  
David R. Easterling ◽  
David A. R. Kristovich ◽  
Byron Gleason ◽  
Leslie Stoecker ◽  
...  

Abstract Daily extreme precipitation events, exceeding a threshold for a 1-in-5-yr occurrence, were identified from a network of 935 Cooperative Observer stations for the period of 1908–2009. Each event was assigned a meteorological cause, categorized as extratropical cyclone near a front (FRT), extratropical cyclone near center of low (ETC), tropical cyclone (TC), mesoscale convective system (MCS), air mass (isolated) convection (AMC), North American monsoon (NAM), and upslope flow (USF). The percentage of events ascribed to each cause were 54% for FRT, 24% for ETC, 13% for TC, 5% for MCS, 3% for NAM, 1% for AMC, and 0.1% for USF. On a national scale, there are upward trends in events associated with fronts and tropical cyclones, but no trends for other meteorological causes. On a regional scale, statistically significant upward trends in the frontal category are found in five of the nine regions. For ETCs, there are statistically significant upward trends in the Northeast and east north central. For the NAM category, the trend in the West is upward. The central region has seen an upward trend in events caused by TCs.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Michele E. Morgado ◽  
Chengsheng Jiang ◽  
Jordan Zambrana ◽  
Crystal Romeo Upperman ◽  
Clifford Mitchell ◽  
...  

Abstract Background Infections with nontyphoidal Salmonella cause an estimated 19,336 hospitalizations each year in the United States. Sources of infection can vary by state and include animal and plant-based foods, as well as environmental reservoirs. Several studies have recognized the importance of increased ambient temperature and precipitation in the spread and persistence of Salmonella in soil and food. However, the impact of extreme weather events on Salmonella infection rates among the most prevalent serovars, has not been fully evaluated across distinct U.S. regions. Methods To address this knowledge gap, we obtained Salmonella case data for S. Enteriditis, S. Typhimurium, S. Newport, and S. Javiana (2004-2014; n = 32,951) from the Foodborne Diseases Active Surveillance Network (FoodNet), and weather data from the National Climatic Data Center (1960-2014). Extreme heat and precipitation events for the study period (2004-2014) were identified using location and calendar day specific 95th percentile thresholds derived using a 30-year baseline (1960-1989). Negative binomial generalized estimating equations were used to evaluate the association between exposure to extreme events and salmonellosis rates. Results We observed that extreme heat exposure was associated with increased rates of infection with S. Newport in Maryland (Incidence Rate Ratio (IRR): 1.07, 95% Confidence Interval (CI): 1.01, 1.14), and Tennessee (IRR: 1.06, 95% CI: 1.04, 1.09), both FoodNet sites with high densities of animal feeding operations (e.g., broiler chickens and cattle). Extreme precipitation events were also associated with increased rates of S. Javiana infections, by 22% in Connecticut (IRR: 1.22, 95% CI: 1.10, 1.35) and by 5% in Georgia (IRR: 1.05, 95% CI: 1.01, 1.08), respectively. In addition, there was an 11% (IRR: 1.11, 95% CI: 1.04-1.18) increased rate of S. Newport infections in Maryland associated with extreme precipitation events. Conclusions Overall, our study suggests a stronger association between extreme precipitation events, compared to extreme heat, and salmonellosis across multiple U.S. regions. In addition, the rates of infection with Salmonella serovars that persist in environmental or plant-based reservoirs, such as S. Javiana and S. Newport, appear to be of particular significance regarding increased heat and rainfall events.


2015 ◽  
Vol 3 (6) ◽  
pp. 3983-4005 ◽  
Author(s):  
S. O. Krichak ◽  
S. B. Feldstein ◽  
P. Alpert ◽  
S. Gualdi ◽  
E. Scoccimarro ◽  
...  

Abstract. Extreme precipitation events in the Mediterranean region during the cool season are strongly affected by the export of moist air from tropical and subtropical areas into the extratropics. The aim of this paper is to present a discussion of the major research efforts on this subject and to formulate a summary of our understanding of this phenomenon, along with its recent past trends from a climate change perspective. The issues addressed are: a discussion of several case studies; the origin of the air moisture and the important role of atmospheric rivers for fueling the events; the mechanism responsible for the intensity of precipitation during the events, and the possible role of global warming in recent past trends in extreme weather events over the Mediterranean region.


RBRH ◽  
2018 ◽  
Vol 23 (0) ◽  
Author(s):  
Aline de Araújo Nunes ◽  
Eber José de Andrade Pinto ◽  
Márcio Benedito Baptista

ABSTRACT Extreme weather events have emerged as one of the main manifestations of climate change, being that the mitigation of the elapsed impacts demand studies of the magnitude and frequency of their occurrence. This study aims to identify the trends of extreme precipitation events in the Metropolitan Region of Belo Horizonte, especially concerning their frequency. The trends of precipitation were studied with especial regard to the indices set by ETCCDMI (Expert Team on Climate Change Detection Monitoring and Indices), including time series of annual number of rainy days above a certain threshold recorded at fourteen rainfall gauging stations. One stage of this study consisted in surveying the flood occurrence in the area, besides analyzing the precipitation data corresponding to date of flood occurrences, in order to establish a threshold value beyond which an event would entail potential impacts. No regional index pattern could be set based on such results, although the rainfall station located in the city of Belo Horizonte reported a statistically significant increase in daily precipitation events above 10, 20, 30 and 40 mm, in maximum precipitation recorded over five consecutive days, in daily intensity, and in total annual precipitation. Abrupt changes in rainfall series were also recorded. The results have indicated that the city may be potentially impacted by extreme rainfall increase, probably associated to changes in temperatures on regional and local scales.


2021 ◽  
Vol 16 (4) ◽  
pp. 85-101
Author(s):  
Alexandra Berényi ◽  
◽  
Rita Pongrácz ◽  
Judit Bartholy ◽  
◽  
...  

The aim of our study is to analyse the spatial patterns and temporal trends of average and extreme precipitation events in a few selected plain regions between 1951 and 2019. Besides the Great Hungarian Plain we chose two plain regions located in the southern part of the continent (i.e. the Po Valley and the Romanian Plain) with the purpose of comparing similar geographical regions, and creating a scientific basis to comprehensively analyse the effects of climate change on economy, society, and nature. For choosing the plains, objective criteria were used, namely, (i) the elevation remains under 200 m throughout the defined area, and (ii) the difference between the neighbouring grid points within the plain region does not exceed 50 m. The analysis of extreme precipitation events was performed for annual periods by calculating 17 climate indices. Based on our research of the past, there is a clear increase in the frequency and intensity of extreme precipitation events, in the length of dry periods as well as in the occurrence of extreme weather events.


2016 ◽  
Vol 144 (1) ◽  
pp. 347-369 ◽  
Author(s):  
Yannick Barton ◽  
Paraskevi Giannakaki ◽  
Harald von Waldow ◽  
Clément Chevalier ◽  
Stephan Pfahl ◽  
...  

Abstract Temporal clustering of extreme precipitation events on subseasonal time scales is of crucial importance for the formation of large-scale flood events. Here, the temporal clustering of regional-scale extreme precipitation events in southern Switzerland is studied. These precipitation events are relevant for the flooding of lakes in southern Switzerland and northern Italy. This research determines whether temporal clustering is present and then identifies the dynamics that are responsible for the clustering. An observation-based gridded precipitation dataset of Swiss daily rainfall sums and ECMWF reanalysis datasets are used. Also used is a modified version of Ripley’s K function, which determines the average number of extreme events in a time period, to characterize temporal clustering on subseasonal time scales and to determine the statistical significance of the clustering. Significant clustering of regional-scale precipitation extremes is found on subseasonal time scales during the fall season. Four high-impact clustering episodes are then selected and the dynamics responsible for the clustering are examined. During the four clustering episodes, all heavy precipitation events were associated with an upper-level breaking Rossby wave over western Europe and in most cases strong diabatic processes upstream over the Atlantic played a role in the amplification of these breaking waves. Atmospheric blocking downstream over eastern Europe supported this wave breaking during two of the clustering episodes. During one of the clustering periods, several extratropical transitions of tropical cyclones in the Atlantic contributed to the formation of high-amplitude ridges over the Atlantic basin and downstream wave breaking. During another event, blocking over Alaska assisted the phase locking of the Rossby waves downstream over the Atlantic.


2021 ◽  
Author(s):  
Alexandra Berényi ◽  
Rita Pongrácz ◽  
Judit Bartholy

<p>The effects of climate change on precipitation patterns can be observed on global scale, however, global climate change affects different regions more or less severely. Because of the high variability of precipitation in particular, future changes related to precipitation can be very different, even opposite on continental/regional scale. Even within Europe, the detected trends in precipitation patterns and extremes differ across the continent. According to climate model simulations for the future, Northern Europe is projected to become wetter, while the southern parts of the continent will tend to become drier by the end of the 21st century. The frequency and intensity of extreme precipitation will also increase in the whole continent. The possible shifts in precipitation patterns from wetter to drier conditions with fewer but increased extreme precipitation events can cause severe natural hazards, such as extended drought periods, water scarcity, floods and flash floods, therefore appropriate risk management is essential. For this purpose the analysis of possible hazards associated to specific precipitation-related weather phenomena is necessary and serves as key input.</p><p>Since plain regions play an important role in agricultural economy and are more exposed to floods because of their geographic features and the gravitational movement of surface water, our primary goal was to examine temporal and spatial changes in extreme precipitation events and dry spells in three European lowlands, located in the southern part of the continent. We selected the following regions: the Po-Valley located in Italy with humid subtropical climate; the Romanian Plain in Romania, and the Pannonian Plain covering different parts of Hungary, Serbia, Slovakia, Croatia, Romania and Ukraine with humid continental climatic conditions.</p><p>Precipitation time series were used from the E-OBS v.22 dataset on a 0.1° regular grid. The dataset is based on station measurements from Europe and are available from 1950 onward with daily temporal resolution. For the analysis of main precipitation patterns, dry spells and extreme events, we use 17 climate indices (most of them are defined by the Expert Team on Climate Change Detection and Indices, ECCDI). The analysis focuses on annual and seasonal changes in the three regions. The selected indices are capable to represent the differences and similarities between and within the plains. Our preliminary results show that the occurrence and intensity of extreme precipitation events increased in all regions, while the trends of duration and frequency of dry spells show both intra- and inter regional variability across the plains.</p>


Author(s):  
Donghui Lu ◽  
Susan L. Tighe ◽  
Wei-Chau Xie

Pavement infrastructure is experiencing unanticipated climate conditions caused by global warming. Extreme weather events, such as extreme precipitations, are increasing in intensity and frequency, creating rising concern in pavement vulnerability and resilience analysis. Previous design approaches based on historical climate data may no longer be adequate for addressing future conditions. To promote pavement resilience under climate change, assessing pavement risk for extreme events is essential for prioritizing vulnerable infrastructure and developing adaptation strategies. The objective of this study is to develop a quantitative evaluation methodology for assessing pavement risk from extreme precipitations under climate change. Hazard analysis, fragility modeling, and cost estimation are the three major components for risk evaluation. An ensemble of 24 global climate models is used for predicting future extreme precipitations under various climate-forcing scenarios. The Mechanistic-Empirical Pavement Design Guide is employed to simulate performance change for performing fragility modeling. Risk assessment models considering a full range of hazards were used to quantify risk of asset value loss over specified analysis periods. Results indicate that future extreme precipitation events are expected to cause an increased medium risk of asset value loss. However, high uncertainties are involved in the estimation owing to variations in predicted climates. Major pavement damages do not necessarily equate with highest risk because the probability of occurrence of major damage is relatively lower. The proposed approach provides a practical tool for analyzing the interaction among extreme precipitation levels, pavement designs, damage states, occurrence probability, and asset value at risk.


Sign in / Sign up

Export Citation Format

Share Document