scholarly journals Impact of Land Model Calibration on Coupled Land–Atmosphere Prediction

2013 ◽  
Vol 14 (5) ◽  
pp. 1373-1400 ◽  
Author(s):  
Joseph A. Santanello ◽  
Sujay V. Kumar ◽  
Christa D. Peters-Lidard ◽  
Ken Harrison ◽  
Shujia Zhou

Abstract Land–atmosphere (LA) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. In this study, the authors examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled Weather Research and Forecasting Model (WRF) forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through calibration of the Noah land surface model using the new optimization and uncertainty estimation subsystems in NASA's Land Information System (LIS-OPT/LIS-UE). The impact of the calibration on the 1) spinup of the land surface used as initial conditions and 2) the simulated heat and moisture states and fluxes of the coupled WRF simulations is then assessed. In addition, the sensitivity of this approach to the period of calibration (dry, wet, or average) is investigated. Results show that the offline calibration is successful in providing improved initial conditions and land surface physics for the coupled simulations and in turn leads to systematic improvements in land–PBL fluxes and near-surface temperature and humidity forecasts. Impacts are larger during dry regimes, but calibration during either primarily wet or dry periods leads to improvements in coupled simulations due to the reduction in land surface model bias. Overall, these results provide guidance on the questions of what, how, and when to calibrate land surface models for coupled model prediction.

2011 ◽  
Vol 4 (4) ◽  
pp. 1115-1131 ◽  
Author(s):  
J. Mao ◽  
S. J. Phipps ◽  
A. J. Pitman ◽  
Y. P. Wang ◽  
G. Abramowitz ◽  
...  

Abstract. The CSIRO Mk3L climate system model, a reduced-resolution coupled general circulation model, has previously been described in this journal. The model is configured for millennium scale or multiple century scale simulations. This paper reports the impact of replacing the relatively simple land surface scheme that is the default parameterisation in Mk3L with a sophisticated land surface model that simulates the terrestrial energy, water and carbon balance in a physically and biologically consistent way. An evaluation of the new model's near-surface climatology highlights strengths and weaknesses, but overall the atmospheric variables, including the near-surface air temperature and precipitation, are simulated well. The impact of the more sophisticated land surface model on existing variables is relatively small, but generally positive. More significantly, the new land surface scheme allows an examination of surface carbon-related quantities including net primary productivity which adds significantly to the capacity of Mk3L. Overall, results demonstrate that this reduced-resolution climate model is a good foundation for exploring long time scale phenomena. The addition of the more sophisticated land surface model enables an exploration of important Earth System questions including land cover change and abrupt changes in terrestrial carbon storage.


2013 ◽  
Vol 26 (15) ◽  
pp. 5608-5623 ◽  
Author(s):  
Andrew G. Slater ◽  
David M. Lawrence

Abstract Permafrost is a characteristic aspect of the terrestrial Arctic and the fate of near-surface permafrost over the next century is likely to exert strong controls on Arctic hydrology and biogeochemistry. Using output from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), the authors assess its ability to simulate present-day and future permafrost. Permafrost extent diagnosed directly from each climate model's soil temperature is a function of the modeled surface climate as well as the ability of the land surface model to represent permafrost physics. For each CMIP5 model these two effects are separated by using indirect estimators of permafrost driven by climatic indices and compared to permafrost extent directly diagnosed via soil temperatures. Several robust conclusions can be drawn from this analysis. Significant air temperature and snow depth biases exist in some model's climates, which degrade both directly and indirectly diagnosed permafrost conditions. The range of directly calculated present-day (1986–2005) permafrost area is extremely large (~4–25 × 106 km2). Several land models contain structural weaknesses that limit their skill in simulating cold region subsurface processes. The sensitivity of future permafrost extent to temperature change over the present-day observed permafrost region averages (1.67 ± 0.7) × 106 km2 °C−1 but is a function of the spatial and temporal distribution of climate change. Because of sizable differences in future climates for the representative concentration pathway (RCP) emission scenarios, a wide variety of future permafrost states is predicted by 2100. Conservatively, the models suggest that for RCP4.5, permafrost will retreat from the present-day discontinuous zone. Under RCP8.5, sustainable permafrost will be most probable only in the Canadian Archipelago, Russian Arctic coast, and east Siberian uplands.


2011 ◽  
Vol 4 (3) ◽  
pp. 1611-1642 ◽  
Author(s):  
J. Mao ◽  
S. J. Phipps ◽  
A. J. Pitman ◽  
Y. P. Wang ◽  
G. Abramowitz ◽  
...  

Abstract. The CSIRO Mk3L climate system model, a reduced-resolution coupled general circulation model, has previously been described in this journal. The model is configured for millennium scale or multiple century scale simulations. This paper reports the impact of replacing the relatively simple land surface scheme that is the default parameterisation in Mk3L with a sophisticated land surface model that simulates the terrestrial energy, water and carbon balance in a physically and biologically consistent way. An evaluation of the new model's near-surface climatology highlights strengths and weaknesses, but overall the atmospheric variables, including the near-surface air temperature and precipitation, are simulated well. The impact of the more sophisticated land surface model on existing variables is relatively small, but generally positive. More significantly, the new land surface scheme allows an examination of surface carbon-related quantities including net primary productivity which adds significantly to the capacity of Mk3L. Overall, results demonstrate that this reduced-resolution climate model is a good foundation for exploring long time scale phenomena. The addition of the more sophisticated land surface model enables an exploration of important Earth System questions including land cover change and abrupt changes in terrestrial carbon storage.


2014 ◽  
Vol 11 (6) ◽  
pp. 6843-6880
Author(s):  
G. M. Tsarouchi ◽  
W. Buytaert ◽  
A. Mijic

Abstract. Land surface models are tools that represent energy and water flux exchanges between land and the atmosphere. Although much progress has been made in adding detailed physical processes into these models, there is much room left for improved estimates of evapotranspiration fluxes, by including a more reasonable and accurate representation of crop dynamics. Recent studies suggest a strong land surface–atmosphere coupling over India and since this is one of the most intensively cultivated areas in the world, the strong impact of crops on the evaporative flux cannot be neglected. In this study we dynamically couple the land surface model JULES with the crop growth model InfoCrop. JULES in its current version does not simulate crop growth. Instead, it treats crops as natural grass, while using prescribed vegetation parameters. Such simplification might lead to modelling errors. Therefore we developed a coupled modelling scheme that simulates dynamically crop development and parameterised it for the two main crops of the study area, wheat and rice. This setup is used to examine the impact of inter-seasonal land cover changes in evapotranspiration fluxes of the Upper Ganges river basin (India). The sensitivity of JULES with regard to the dynamics of the vegetation cover is evaluated. Our results show that the model is sensitive to the changes introduced after coupling it with the crop model. Evapotranspiration fluxes, which are significantly different between the original and the coupled model, are giving an approximation of the magnitude of error to be expected in LSMs that do not include dynamic crop growth. For the wet season, in the original model, the monthly Mean Error ranges from 7.5 to 24.4 mm m−1, depending on different precipitation forcing. For the same season, in the coupled model, the monthly Mean Error's range is reduced to 7–14 mm m−1. For the dry season, in the original model, the monthly Mean Error ranges from 10 to 17 mm m−1, depending on different precipitation forcing. For the same season, in the coupled model, the monthly Mean Error's range is reduced to 1–2 mm m−1. The new modelling scheme, by offering increased accuracy of evapotranspiration estimations, is an important step towards a better understanding of the two-way crops–atmosphere interactions.


2021 ◽  
Author(s):  
Stefan Kruse ◽  
Simone M. Stünzi ◽  
Moritz Langer ◽  
Julia Boike ◽  
Ulrike Herzschuh

<p>Tundra-taiga ecotone dynamics play a relevant role in the global carbon cycle. However, it is rather uncertain whether these ecosystems could develop into a carbon source rather than continuing atmospheric carbon sequestration under global warming. This knowledge gap stems from the complex permafrost-vegetation interactions, not yet fully understood. Consequently, shedding light on the role of current and future active layer dynamics is crucial for an accurate prediction of treeline dynamics, and thus for aboveground forest biomass and carbon stock developments.</p><p>We make use of a coupled model version combining CryoGrid, a one-dimensional permafrost land-surface model, with LAVESI, an individual-based and spatially explicit forest model for larch species (<em>Larix </em>Mill.) in Siberia. Following a parametrization against an extensive field data set of 100+ forest inventories conducted along the Siberian treeline (97-169° E), we run simulations for the upcoming centuries forced by climatic change scenarios.</p><p>The coupled model setup benefits from the detailed process implementation gained while developing the individual models. Therefore, we can reproduce the energy transfer and thermal regime in permafrost ground as well as the radiation budget, nitrogen and photosynthetic profiles, canopy turbulence, and leaf fluxes, while at the same time, predicting the expected establishment, die-off, and treeline movements of larch forests. In our analyses, we focus on vegetation and permafrost dynamics and reveal the magnitudes of different feedback processes between permafrost, vegetation, and current and future climate in Northern Siberia.</p>


2018 ◽  
Vol 11 (2) ◽  
pp. 541-560 ◽  
Author(s):  
Przemyslaw Zelazowski ◽  
Chris Huntingford ◽  
Lina M. Mercado ◽  
Nathalie Schaller

Abstract. Global circulation models (GCMs) are the best tool to understand climate change, as they attempt to represent all the important Earth system processes, including anthropogenic perturbation through fossil fuel burning. However, GCMs are computationally very expensive, which limits the number of simulations that can be made. Pattern scaling is an emulation technique that takes advantage of the fact that local and seasonal changes in surface climate are often approximately linear in the rate of warming over land and across the globe. This allows interpolation away from a limited number of available GCM simulations, to assess alternative future emissions scenarios. In this paper, we present a climate pattern-scaling set consisting of spatial climate change patterns along with parameters for an energy-balance model that calculates the amount of global warming. The set, available for download, is derived from 22 GCMs of the WCRP CMIP3 database, setting the basis for similar eventual pattern development for the CMIP5 and forthcoming CMIP6 ensemble. Critically, it extends the use of the IMOGEN (Integrated Model Of Global Effects of climatic aNomalies) framework to enable scanning across full uncertainty in GCMs for impact studies. Across models, the presented climate patterns represent consistent global mean trends, with a maximum of 4 (out of 22) GCMs exhibiting the opposite sign to the global trend per variable (relative humidity). The described new climate regimes are generally warmer, wetter (but with less snowfall), cloudier and windier, and have decreased relative humidity. Overall, when averaging individual performance across all variables, and without considering co-variance, the patterns explain one-third of regional change in decadal averages (mean percentage variance explained, PVE, 34.25±5.21), but the signal in some models exhibits much more linearity (e.g. MIROC3.2(hires): 41.53) than in others (GISS_ER: 22.67). The two most often considered variables, near-surface temperature and precipitation, have a PVE of 85.44±4.37 and 14.98±4.61, respectively. We also provide an example assessment of a terrestrial impact (changes in mean runoff) and compare projections by the IMOGEN system, which has one land surface model, against direct GCM outputs, which all have alternative representations of land functioning. The latter is noted as an additional source of uncertainty. Finally, current and potential future applications of the IMOGEN version 2.0 modelling system in the areas of ecosystem modelling and climate change impact assessment are presented and discussed.


2021 ◽  
Author(s):  
Sujeong Lim ◽  
Claudio Cassardo ◽  
Seon Ki Park

<p>The ensemble data assimilation system is beneficial to represent the initial uncertainties and flow-dependent background error covariance (BEC). In particular, the inevitable model uncertainties can be expressed by ensemble spread, that is the standard deviation of ensemble BEC. However, the ensemble spread generally suffers from under-estimated problems. To alleviate this problem, recent studies employed stochastic perturbation schemes to increases the ensemble spreads by adding the random forcing in the model tendencies (i.e., physical or dynamical tendencies) or parameterization schemes (i.e., PBL, convective scheme, etc.). In this study, we focus on the near-surface uncertainties which are affected by the interactions between the land and atmosphere process. The land surface model (LSM) provides various fluxes as the lower boundary condition to the atmosphere, influencing the accuracy of hourly-to-seasonal scale weather forecasting, but the surface uncertainties were not much addressed yet. In this study, we developed the stochastically perturbed parameterization (SPP) scheme for the Noah LSM. The Weather Research and Forecasting (WRF) ensemble system is used for regional weather forecasting over East Asia, especially over the Korean Peninsula. As a testbed experiment with the newly-developed Noah LSM-SPP system, we first perturbed the soil temperature — a crucial variable for the near-surface forecasts by affecting sensible heat fluxes, land surface skin temperature and surface air temperature, and hence lower-tropospheric temperature. Here, the random forcing used in perturbation is made by the tuning parameters for amplitude, length scale, and time scales: they are commonly determined empirically by trial and error. In order to find optimal tuning parameter values, we applied a global optimization algorithm — the micro-genetic algorithm (micro-GA) — to achieve the smallest root-mean-squared errors. Our results indicate that optimization of the random forcing parameters contributes to an increase in the ensemble spread and a decrease in the ensemble mean errors in the near-surface and lower-troposphere uncertainties. Further experiments will be conducted by including soil moisture in the testbed.</p>


2014 ◽  
Vol 18 (10) ◽  
pp. 4223-4238 ◽  
Author(s):  
G. M. Tsarouchi ◽  
W. Buytaert ◽  
A. Mijic

Abstract. Land-Surface Models (LSMs) are tools that represent energy and water flux exchanges between land and the atmosphere. Although much progress has been made in adding detailed physical processes into these models, there is much room left for improved estimates of evapotranspiration fluxes, by including a more reasonable and accurate representation of crop dynamics. Recent studies suggest a strong land-surface–atmosphere coupling over India and since this is one of the most intensively cultivated areas in the world, the strong impact of crops on the evaporative flux cannot be neglected. In this study we dynamically couple the LSM JULES with the crop growth model InfoCrop. JULES in its current version (v3.4) does not simulate crop growth. Instead, it treats crops as natural grass, while using prescribed vegetation parameters. Such simplification might lead to modelling errors. Therefore we developed a coupled modelling scheme that simulates dynamically crop development and parametrized it for the two main crops of the study area, wheat and rice. This setup is used to examine the impact of inter-seasonal land cover changes in evapotranspiration fluxes of the Upper Ganges River basin (India). The sensitivity of JULES with regard to the dynamics of the vegetation cover is evaluated. Our results show that the model is sensitive to the changes introduced after coupling it with the crop model. Evapotranspiration fluxes, which are significantly different between the original and the coupled model, are giving an approximation of the magnitude of error to be expected in LSMs that do not include dynamic crop growth. For the wet season, in the original model, the monthly Mean Error ranges from 7.5 to 24.4 mm month−1, depending on different precipitation forcing. For the same season, in the coupled model, the monthly Mean Error's range is reduced to 5.4–11.6 mm month−1. For the dry season, in the original model, the monthly Mean Error ranges from 10 to 17 mm month−1, depending on different precipitation forcing. For the same season, in the coupled model, the monthly Mean Error's range is reduced to 2.2–3.4 mm month−1. The new modelling scheme, by offering increased accuracy of evapotranspiration estimations, is an important step towards a better understanding of the two-way crops–atmosphere interactions.


2017 ◽  
Author(s):  
Zilin Wang ◽  
Xin Huang ◽  
Aijun Ding

Abstract. Black carbon (BC) has been identified to play a critical role in aerosol-planet boundary layer (PBL) interaction and further deterioration of near-surface air pollution in megacities, which has been named as its dome effect. However, the impacts of key factors that influence this effect, such as the vertical distribution and aging processes of BC, and also the underlying land surface, have not been quantitatively explored yet. Here, based on available in-situ measurements of meteorology and atmospheric aerosols together with the meteorology-chemistry online coupled model, WRF-Chem, we conduct a set of parallel simulations to quantify the roles of these factors in influencing the BC's dome effect and surface haze pollution, and discuss the main implications of the results to air pollution mitigation in China. We found that the impact of BC on PBL is very sensitive to the altitude of aerosol layer. The upper level BC, especially those near the capping inversion, is more essential in suppressing the PBL height and weakening the turbulence mixing. The dome effect of BC tends to be significantly intensified as BC aerosol mixed with scattering aerosols during winter haze events, resulting in a decrease of PBL height by more than 25 %. In addition, the dome effect is more substantial (up to 15 %) in rural areas than that in the urban areas with the same BC loading, indicating an unexpected regional impact of such kind of effect to air quality in countryside. This study suggests that China's regional air pollution would greatly benefit from BC emission reductions, especially those from the elevated sources from the chimneys and also the domestic combustions in rural areas, through weakening the aerosol-boundary layer interactions that triggered by BC.


2015 ◽  
Vol 8 (6) ◽  
pp. 1857-1876 ◽  
Author(s):  
J. J. Guerrette ◽  
D. K. Henze

Abstract. Here we present the online meteorology and chemistry adjoint and tangent linear model, WRFPLUS-Chem (Weather Research and Forecasting plus chemistry), which incorporates modules to treat boundary layer mixing, emission, aging, dry deposition, and advection of black carbon aerosol. We also develop land surface and surface layer adjoints to account for coupling between radiation and vertical mixing. Model performance is verified against finite difference derivative approximations. A second-order checkpointing scheme is created to reduce computational costs and enable simulations longer than 6 h. The adjoint is coupled to WRFDA-Chem, in order to conduct a sensitivity study of anthropogenic and biomass burning sources throughout California during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. A cost-function weighting scheme was devised to reduce the impact of statistically insignificant residual errors in future inverse modeling studies. Results of the sensitivity study show that, for this domain and time period, anthropogenic emissions are overpredicted, while wildfire emission error signs vary spatially. We consider the diurnal variation in emission sensitivities to determine at what time sources should be scaled up or down. Also, adjoint sensitivities for two choices of land surface model (LSM) indicate that emission inversion results would be sensitive to forward model configuration. The tools described here are the first step in conducting four-dimensional variational data assimilation in a coupled meteorology–chemistry model, which will potentially provide new constraints on aerosol precursor emissions and their distributions. Such analyses will be invaluable to assessments of particulate matter health and climate impacts.


Sign in / Sign up

Export Citation Format

Share Document