scholarly journals Interannual Variability of Land–Atmosphere Coupling Strength

2013 ◽  
Vol 14 (5) ◽  
pp. 1636-1646 ◽  
Author(s):  
Zhichang Guo ◽  
Paul A. Dirmeyer

Abstract Recent studies in the Global Land–Atmosphere Coupling Experiment (GLACE) established a framework to estimate the extent to which anomalies in the land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. Within this framework, a multiyear GLACE-type experiment is carried out with a coupled land–atmosphere general circulation model to examine the interannual variability of land–atmosphere coupling strength. Soil wetness with intermediate values are in the range at which rainfall generation, near-surface air temperature, and surface turbulent fluxes are most sensitive to soil moisture anomalies, and thus, land–atmosphere coupling strength peaks in this range. As a result, the “hot spots” with strong land–atmosphere coupling strength appear in regions with intermediate climatological soil wetness (e.g., transition zones between dry and wet climates), consistent with previous studies. Land–atmosphere coupling strength experiences significant year-to-year variation because of interannual variability of soil moisture and the local spatiotemporal evolution of hydrologic regime. Coupling strength over areas with dry (wet) climate is enhanced during wet (dry) years since the resultant soil wetness enters into the sensitive range from a relatively insensitive range, and soil moisture can have stronger potential impact on surface turbulent fluxes and convection. On the other hand, land–atmosphere coupling strength over areas with wet (dry) climate is weakened during wet (dry) years since the soil wetness moves further away from the sensitive range. This results in a positive correlation between the land–atmosphere coupling strength and soil moisture anomalies over areas with dry climate and a negative correlation over areas with wet climate.

1986 ◽  
Vol 67 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Jean-Claude André ◽  
Jean-Paul Goutorbe ◽  
Alain Perrier

The HAPEX-MOBILHY program is aimed at studying the hydrological budget and evaporation flux at the scale of a GCM (general circulation model) grid square, i.e., 104 km2. Different surface and subsurface networks will be operated during the year 1986, to measure and monitor soil moisture, surface-energy budget and surface hydrology, as well as atmospheric properties. A two-and-a-half-month special observing period will allow for detailed measurements of atmospheric fluxes and for intensive remote sensing of surface properties using well-instrumented aircraft. The main objective of the program, for which guest investigations are strongly encouraged, is to provide a data base against which parameterization schemes for the land-surface water budget will be tested and developed.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 725
Author(s):  
Tomohito J. Yamada ◽  
Yadu Pokhrel

Irrigation can affect climate and weather patterns from regional to global scales through the alteration of surface water and energy balances. Here, we couple a land-surface model (LSM) that includes various human land-water management activities including irrigation with an atmospheric general circulation model (AGCM) to examine the impacts of irrigation-induced land disturbance on the subseasonal predictability of near-surface variables. Results indicate that the simulated global irrigation and groundwater withdrawals (circa 2000) are ~3600 and ~370 km3/year, respectively, which are in good agreement with previous estimates from country statistics and offline–LSMs. Subseasonal predictions for boreal summers during the 1986–1995 period suggest that the spread among ensemble simulations of air temperature can be substantially reduced by using realistic land initializations considering irrigation-induced changes in soil moisture. Additionally, it is found that the subseasonal forecast skill for near-surface temperature and sea level pressure significantly improves when human-induced land disturbance is accounted for in the AGCM. These results underscore the need to incorporate irrigation into weather forecast models, such as the global forecast system.


2013 ◽  
Vol 10 (1) ◽  
pp. 1185-1212 ◽  
Author(s):  
N. Y. Krakauer ◽  
M. J. Puma ◽  
B. I. Cook

Abstract. Climate models have traditionally only represented heat and water fluxes within relatively shallow soil layers, but there is increasing interest in the possible role of heat and water exchanges with the deeper subsurface. Here, we integrate an idealized 50 m deep aquifer into the land surface module of the GISS ModelE general circulation model to test the influence of aquifer-soil moisture and heat exchanges on climate variables. We evaluate the impact on the modeled climate of aquifer-soil heat and water fluxes separately, as well as in combination. The addition of the aquifer to ModelE has limited impact on annual-mean climate, with little change in global mean land temperature, precipitation, or evaporation. The seasonal amplitude of deep soil temperature is strongly damped by the soil-aquifer heat flux. This not only improves the model representation of permafrost area but propagates to the surface, resulting in an increase in the seasonal amplitude of surface air temperature of >1 K in the Arctic. The soil-aquifer water and heat fluxes both slightly decrease interannual variability in soil moisture and land-surface temperature, and decrease the soil moisture memory of the land surface on annual timescales. The results of this experiment suggest that deepening the modeled land surface, compared to modeling only a shallower soil column with a no-flux bottom boundary condition, has limited impact on mean climate but does affect seasonality and interannual persistence.


2004 ◽  
Vol 5 (6) ◽  
pp. 1049-1063 ◽  
Author(s):  
Randal D. Koster ◽  
Max J. Suarez ◽  
Ping Liu ◽  
Urszula Jambor ◽  
Aaron Berg ◽  
...  

Abstract Forcing a land surface model (LSM) offline with realistic global fields of precipitation, radiation, and near-surface meteorology produces realistic fields (within the context of the LSM) of soil moisture, temperature, and other land surface states. These fields can be used as initial conditions for precipitation and temperature forecasts with an atmospheric general circulation model (AGCM). Their usefulness is tested in this regard by performing retrospective 1-month forecasts (for May through September, 1979–93) with the NASA Global Modeling and Assimilation Office (GMAO) seasonal prediction system. The 75 separate forecasts provide an adequate statistical basis for quantifying improvements in forecast skill associated with land initialization. Evaluation of skill is focused on the Great Plains of North America, a region with both a reliable land initialization and an ability of soil moisture conditions to overwhelm atmospheric chaos in the evolution of the meteorological fields. The land initialization does cause a small but statistically significant improvement in precipitation and air temperature forecasts in this region. For precipitation, the increases in forecast skill appear strongest in May through July, whereas for air temperature, they are largest in August and September. The joint initialization of land and atmospheric variables is considered in a supplemental series of ensemble monthly forecasts. Potential predictability from atmospheric initialization dominates over that from land initialization during the first 2 weeks of the forecast, whereas during the final 2 weeks, the relative contributions from the two sources are of the same order. Both land and atmospheric initialization contribute independently to the actual skill of the monthly temperature forecast, with the greatest skill derived from the initialization of both. Land initialization appears to contribute the most to monthly precipitation forecast skill.


2013 ◽  
Vol 17 (5) ◽  
pp. 1963-1974 ◽  
Author(s):  
N. Y. Krakauer ◽  
M. J. Puma ◽  
B. I. Cook

Abstract. Climate models have traditionally only represented heat and water fluxes within relatively shallow soil layers, but there is increasing interest in the possible role of heat and water exchanges with the deeper subsurface. Here, we integrate an idealized 50 m deep aquifer into the land surface module of the GISS ModelE general circulation model to test the influence of aquifer–soil moisture and heat exchanges on climate variables. We evaluate the impact on the modeled climate of aquifer–soil heat and water fluxes separately, as well as in combination. The addition of the aquifer to ModelE has limited impact on annual-mean climate, with little change in global mean land temperature, precipitation, or evaporation. The seasonal amplitude of deep soil temperature is strongly damped by the soil–aquifer heat flux. This not only improves the model representation of permafrost area but propagates to the surface, resulting in an increase in the seasonal amplitude of surface air temperature of > 1 K in the Arctic. The soil–aquifer water and heat fluxes both slightly decrease interannual variability in soil moisture and in land-surface temperature, and decrease the soil moisture memory of the land surface on seasonal to annual timescales. The results of this experiment suggest that deepening the modeled land surface, compared to modeling only a shallower soil column with a no-flux bottom boundary condition, has limited impact on mean climate but does affect seasonality and interannual persistence.


2013 ◽  
Vol 26 (5) ◽  
pp. 1818-1837 ◽  
Author(s):  
Hsi-Yen Ma ◽  
Heng Xiao ◽  
C. Roberto Mechoso ◽  
Yongkang Xue

Abstract This study examines the sensitivity of the global climate to land surface processes (LSP) using an atmospheric general circulation model both uncoupled (with prescribed SSTs) and coupled to an oceanic general circulation model. The emphasis is on the interactive soil moisture and vegetation biophysical processes, which have first-order influence on the surface energy and water budgets. The sensitivity to those processes is represented by the differences between model simulations, in which two land surface schemes are considered: 1) a simple land scheme that specifies surface albedo and soil moisture availability and 2) the Simplified Simple Biosphere Model (SSiB), which allows for consideration of interactive soil moisture and vegetation biophysical process. Observational datasets are also employed to assess the extent to which results are realistic. The mean state sensitivity to different LSP is stronger in the coupled mode, especially in the tropical Pacific. Furthermore, the seasonal cycle of SSTs in the equatorial Pacific, as well as the ENSO frequency, amplitude, and locking to the seasonal cycle of SSTs, is significantly modified and more realistic with SSiB. This outstanding sensitivity of the atmosphere–ocean system develops through changes in the intensity of equatorial Pacific trades modified by convection over land. The results further demonstrate that the direct impact of land–atmosphere interactions on the tropical climate is modified by feedbacks associated with perturbed oceanic conditions (“indirect effect” of LSP). The magnitude of such an indirect effect is strong enough to suggest that comprehensive studies on the importance of LSP on the global climate have to be made in a system that allows for atmosphere–ocean interactions.


2009 ◽  
Vol 6 (2) ◽  
pp. 2733-2750 ◽  
Author(s):  
G. Schumann ◽  
D. J. Lunt ◽  
P. J. Valdes ◽  
R. A. M. de Jeu ◽  
K. Scipal ◽  
...  

Abstract. We demonstrate that global satellite products can be used to evaluate climate model soil moisture predictions but conclusions should be drawn with care. The quality of a limited area climate model (LAM) was compared to a general circulation model (GCM) using soil moisture data from two different Earth observing satellites within a model validation scheme that copes with the presence of uncertain data. Results showed that in the face of imperfect models and data, it is difficult to investigate the quality of current land surface schemes in simulating hydrology accurately. Nevertheless, a LAM provides, in general, a better representation of spatial patterns and dynamics of soil moisture. However, in months when data uncertainty is higher, particularly in colder months and in periods when vegetation cover and soil moisture are out of phase (e.g. August in the case of Western Europe), it is not possible to draw firm conclusions about model acceptability. Our work indicates that a higher resolution LAM has more benefits to soil moisture prediction than are due to the resolution alone and can be attributed to an overall intensification of the hydrological cycle relative to the GCM.


1998 ◽  
Vol 2 (2/3) ◽  
pp. 239-255 ◽  
Author(s):  
P. de Rosnay ◽  
J. Polcher

Abstract. The aim of this paper is to improve the representation of root water uptake in the land surface scheme SECHIBA coupled to the LMD General Circulation Model (GCM). Root water uptake mainly results from the interaction between soil moisture and root profiles. Firstly, one aspect of the soil hydrology in SECHIBA is changed: it is shown that increasing the soil water storage capacity leads to a reduction in the frequency of soil water drought, but enhances the mean evapotranspiration. Secondly, the representation of the soil-vegetation interaction is improved by allowing a different root profile for each type of vegetation. The interaction between sub-grid scale variabilities in soil moisture and vegetation is also studied. The approach consists of allocating a separate soil water column to each vegetation type, thereby 'tiling' the grid square. However, the possibility of choosing the degree of soil moisture spatial heterogeneity is retained. These enhancements of the land surface system are compared within a number of GCM experiments.


2007 ◽  
Vol 135 (4) ◽  
pp. 1474-1489 ◽  
Author(s):  
O. Coindreau ◽  
F. Hourdin ◽  
M. Haeffelin ◽  
A. Mathieu ◽  
C. Rio

Abstract The Laboratoire de Météorologie Dynamique atmospheric general circulation model with zooming capability (LMDZ) has been used in a nudged mode to enable comparison of model outputs with routine observations and evaluate the model physical parameterizations. Simulations have been conducted with a stretched grid refined over the vicinity of Paris, France, where observations, collected at the Trappes station (Météo-France) and at the Site Instrumental de Recherche par Télédétection Atmosphérique observatory, are available. For the purpose of evaluation of physical parameterizations, the large-scale component of the modeled circulation is adjusted toward ECMWF analyses outside the zoomed area only, whereas the inside region can evolve freely. A series of sensitivity experiments have been performed with different parameterizations of land surface and boundary layer processes. Compared with previous versions of the LMDZ model, a “thermal plume model,” in association with a constant resistance to evaporation improves agreement with observations. The new parameterization significantly improves the representation of seasonal and diurnal cycles of near-surface meteorology, the day-to-day variability of planetary boundary layer height, and the cloud radiative forcing. This study emphasizes the potential of using a climate model with a nudging and zooming capability to assess model physical parameterizations.


2021 ◽  
pp. 1-49
Author(s):  
Jane E. Smyth ◽  
Yi Ming

AbstractMonsoons emerge over a range of land surface conditions and exhibit varying physical characteristics over the seasonal cycle, from onset to withdrawal. Systematically varying the moisture and albedo parameters over land in an idealized modeling framework allows one to analyze the physics underlying the successive stages of monsoon development. To this end we implement an isolated South American continent with reduced heat capacity but no topography in an idealized moist general circulation model. Irrespective of the local moisture availability, the seasonal cycles of precipitation and circulation over the South American monsoon sector are distinctly monsoonal with the default surface albedo. The dry land case (zero evaporation) is characterized by a shallow overturning circulation with vigorous lower-tropospheric ascent, transporting water vapor from the ocean. By contrast, with bucket hydrology or unlimited land moisture the monsoon features deep moist convection that penetrates the upper troposphere. A series of land albedo perturbation experiments indicates that the monsoon strengthens with the net column energy flux and the near-surface moist static energy with all land moisture conditions. When the land-ocean thermal contrast is strong enough, inertial instability alone is sufficient for producing a shallow but vigorous circulation and converging a large amount of moisture from the ocean even in the absence of land moisture. Once the land is sufficiently moist, convective instability takes hold and the shallow circulation deepens. These results have implications for monsoon onset and intensification, and may elucidate the seasonal variations in how surface warming impacts tropical precipitation over land.


Sign in / Sign up

Export Citation Format

Share Document