A novel Machine Learning-based gap-filling of fine-resolution remotely sensed snow cover fraction data by combining downscaling and regression

Author(s):  
Soni Yatheendradas ◽  
Sujay Kumar

AbstractSatellite-based remotely-sensed observations of snow cover fraction (SCF) can have data gaps in spatially distributed coverage from sensor and orbital limitations. We mitigate these limitations in the example fine-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) data by gap-filling using auxiliary 1-km datasets that either aid in downscaling from coarser-resolution (5 km) MODIS SCF wherever not fully covered by clouds, or else by themselves via regression wherever fully cloud-covered. This study’s prototype predicts a 1-km version of the 500 m MOD10A1 SCF target. Due to non-collocatedness of spatial gaps even across input and auxiliary datasets, we consider a recent gap-agnostic advancement of partial convolution in computer vision for both training and predictive gap-filling. Partial convolution accommodates spatially consistent gaps across the input images, effectively implementing a 2-dimensional masking. To overcome reduced usable data from non-collocated spatial gaps across inputs, we innovate a fully generalized 3-dimensional masking in this partial convolution. This enables a valid output value at a pixel even if only a single valid input variable and its value exist in the neighborhood covered by the convolutional filter zone centered around that pixel. Thus our gap-agnostic technique can use significantly more examples for training (~67%) and prediction (~100%), instead of only less than 10% for the previous partial convolution. We train an example simple 3-layer legacy Super-Resolution Convolutional Neural Network (SRCNN) to obtain downscaling and regression component performances that are better than baseline values of either climatology or MOD10C1 SCF as relevant. Our generalized partial convolution can enable multiple earth science applications like downscaling, regression, classification and segmentation that were hindered by data gaps.

2021 ◽  
Vol 13 (14) ◽  
pp. 2838
Author(s):  
Yaping Mo ◽  
Yongming Xu ◽  
Huijuan Chen ◽  
Shanyou Zhu

Land surface temperature (LST) is an important environmental parameter in climate change, urban heat islands, drought, public health, and other fields. Thermal infrared (TIR) remote sensing is the main method used to obtain LST information over large spatial scales. However, cloud cover results in many data gaps in remotely sensed LST datasets, greatly limiting their practical applications. Many studies have sought to fill these data gaps and reconstruct cloud-free LST datasets over the last few decades. This paper reviews the progress of LST reconstruction research. A bibliometric analysis is conducted to provide a brief overview of the papers published in this field. The existing reconstruction algorithms can be grouped into five categories: spatial gap-filling methods, temporal gap-filling methods, spatiotemporal gap-filling methods, multi-source fusion-based gap-filling methods, and surface energy balance-based gap-filling methods. The principles, advantages, and limitations of these methods are described and discussed. The applications of these methods are also outlined. In addition, the validation of filled LST values’ cloudy pixels is an important concern in LST reconstruction. The different validation methods applied for reconstructed LST datasets are also reviewed herein. Finally, prospects for future developments in LST reconstruction are provided.


2015 ◽  
Vol 9 (5) ◽  
pp. 1879-1893 ◽  
Author(s):  
K. Atlaskina ◽  
F. Berninger ◽  
G. de Leeuw

Abstract. Thirteen years of Moderate Resolution Imaging Spectroradiometer (MODIS) surface albedo data for the Northern Hemisphere during the spring months (March–May) were analyzed to determine temporal and spatial changes over snow-covered land surfaces. Tendencies in land surface albedo change north of 50° N were analyzed using data on snow cover fraction, air temperature, vegetation index and precipitation. To this end, the study domain was divided into six smaller areas, based on their geographical position and climate similarity. Strong differences were observed between these areas. As expected, snow cover fraction (SCF) has a strong influence on the albedo in the study area and can explain 56 % of variation of albedo in March, 76 % in April and 92 % in May. Therefore the effects of other parameters were investigated only for areas with 100 % SCF. The second largest driver for snow-covered land surface albedo changes is the air temperature when it exceeds a value between −15 and −10 °C, depending on the region. At monthly mean air temperatures below this value no albedo changes are observed. The Enhanced Vegetation Index (EVI) and precipitation amount and frequency were independently examined as possible candidates to explain observed changes in albedo for areas with 100 % SCF. Amount and frequency of precipitation were identified to influence the albedo over some areas in Eurasia and North America, but no clear effects were observed in other areas. EVI is positively correlated with albedo in Chukotka Peninsula and negatively in eastern Siberia. For other regions the spatial variability of the correlation fields is too high to reach any conclusions.


2005 ◽  
Vol 6 (6) ◽  
pp. 1002-1017 ◽  
Author(s):  
K. L. Brubaker ◽  
R. T. Pinker ◽  
E. Deviatova

Abstract Satellite-derived information on fractional snow cover is essential to resource monitoring, hydrologic modeling, and climate change assessment. Evaluating the accuracy of remotely sensed snow-cover products is important but difficult, largely because point-scale surface observations are spatially sparse and generally nonrepresentative of the remote sensor footprint. In this study, two remotely sensed snow-cover products [the Interactive Multisensor Snow and Ice Mapping System (IMS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG), v.3] are evaluated against ground observations from the Cooperative Observing Network and SNOTEL on a daily basis over the continental United States for calendar year 2000. Ground observations are treated as points in space and time; no physical modeling or statistical interpolation is applied. Hypothesis tests based on discrete and continuous distributions are developed to assess agreement between ground observations and the remotely sensed snow-cover products at 0.25° resolution. (The MODIS CMG product was degraded from 0.05° for this study, thus its potential is not fully evaluated.) As overall snow extent increases in the course of the season, both MODIS and IMS improve in identifying snow-covered areas (fewer errors of omission), but deteriorate in identifying snow-free areas (more errors of commission). The detection of scattered areas of snow is generally better during ablation than during accumulation. Weaknesses of the statistical methods and assumptions are discussed. This work will help to identify areas for improvement in snow-cover detection algorithms and provides a framework to assess the accuracy of remotely sensed snow cover used as model input and/or confirmation.


2009 ◽  
Vol 6 (1) ◽  
pp. 791-841 ◽  
Author(s):  
A. Gafurov ◽  
A. Bárdossy

Abstract. Snow cover information is of central importance for the estimation of water storage in cold mountainous regions. It is difficult to assess distributed snow cover information in a catchment in order to estimate possible water resources. It is especially a challenge to obtain snow cover information for high mountainous areas. Usually, snow depth is measured at meteorological stations, and it is relatively difficult to extrapolate this spatially or temporally since it highly depends on available energy and topography. The snow coverage of a catchment gives detailed information about the catchment's potential source for water. Many regions lack meteorological stations that measure snow, and usually no stations are available at high elevations. Satellite information is a very valuable source for obtaining several environmental parameters. One of the advantages is that the data is mostly provided in a spatially distributed format. This study uses satellite data to estimate snow coverage on high mountainous areas. Moderate-resolution Imaging Spectroradiometer (MODIS) snow cover data is used in the Kokcha Catchment located in the north-eastern part of Afghanistan. The main disadvantage of MODIS data that restricts its direct use in environmental applications is cloud coverage. This is why this study is focused on eliminating cloud covered cells and estimating cell information under cloud covered cells using six logical, spatial and temporal approaches. The results give total cloud removal and mapping of snow cover for the study areas.


2021 ◽  
Vol 13 (4) ◽  
pp. 606
Author(s):  
Tee-Ann Teo ◽  
Yu-Ju Fu

The spatiotemporal fusion technique has the advantages of generating time-series images with high-spatial and high-temporal resolution from coarse-resolution to fine-resolution images. A hybrid fusion method that integrates image blending (i.e., spatial and temporal adaptive reflectance fusion model, STARFM) and super-resolution (i.e., very deep super resolution, VDSR) techniques for the spatiotemporal fusion of 8 m Formosat-2 and 30 m Landsat-8 satellite images is proposed. Two different fusion approaches, namely Blend-then-Super-Resolution and Super-Resolution (SR)-then-Blend, were developed to improve the results of spatiotemporal fusion. The SR-then-Blend approach performs SR before image blending. The SR refines the image resampling stage on generating the same pixel-size of coarse- and fine-resolution images. The Blend-then-SR approach is aimed at refining the spatial details after image blending. Several quality indices were used to analyze the quality of the different fusion approaches. Experimental results showed that the performance of the hybrid method is slightly better than the traditional approach. Images obtained using SR-then-Blend are more similar to the real observed images compared with images acquired using Blend-then-SR. The overall mean bias of SR-then-Blend was 4% lower than Blend-then-SR, and nearly 3% improvement for overall standard deviation in SR-B. The VDSR technique reduces the systematic deviation in spectral band between Formosat-2 and Landsat-8 satellite images. The integration of STARFM and the VDSR model is useful for improving the quality of spatiotemporal fusion.


Sign in / Sign up

Export Citation Format

Share Document