Validation of GOES-Based Insolation Estimates Using Data from the U.S. Climate Reference Network

2005 ◽  
Vol 6 (4) ◽  
pp. 460-475 ◽  
Author(s):  
Jason A. Otkin ◽  
Martha C. Anderson ◽  
John R. Mecikalski ◽  
George R. Diak

Abstract Reliable procedures that accurately map surface insolation over large domains at high spatial and temporal resolution are a great benefit for making the predictions of potential and actual evapotranspiration that are required by a variety of hydrological and agricultural applications. Here, estimates of hourly and daily integrated insolation at 20-km resolution, based on Geostationary Operational Environmental Satellite (GOES) visible imagery are compared to pyranometer measurements made at 11 sites in the U.S. Climate Reference Network (USCRN) over a continuous 15-month period. Such a comprehensive survey is necessary in order to examine the accuracy of the satellite insolation estimates over a diverse range of seasons and land surface types. The relatively simple physical model of insolation that is tested here yields good results, with seasonally averaged model errors of 62 (19%) and 15 (10%) W m−2 for hourly and daily-averaged insolation, respectively, including both clear- and cloudy-sky conditions. This level of accuracy is comparable, or superior, to results that have been obtained with more complex models of atmospheric radiative transfer. Model performance can be improved in the future by addressing a small elevation-related bias in the physical model, which is likely the result of inaccurate model precipitable water inputs or cloud-height assessments.

2018 ◽  
Vol 35 (6) ◽  
pp. 1283-1298 ◽  
Author(s):  
X. Zhuge ◽  
X. Zou ◽  
F. Weng ◽  
M. Sun

AbstractThis study compares the simulation biases of Advanced Himawari Imager (AHI) brightness temperature to observations made at night over China through the use of three land surface emissivity (LSE) datasets. The University of Wisconsin–Madison High Spectral Resolution Emissivity dataset, the Combined Advanced Spaceborne Thermal Emission and Reflection Radiometer and Moderate Resolution Imaging Spectroradiometer Emissivity database over Land High Spectral Resolution Emissivity dataset, and the International Geosphere–Biosphere Programme (IGBP) infrared LSE module, as well as land skin temperature observations from the National Basic Meteorological Observing stations in China are used as inputs to the Community Radiative Transfer Model. The results suggest that the standard deviations of AHI observations minus background simulations (OMBs) are largely consistent for the three LSE datasets. Also, negative biases of the OMBs of brightness temperature uniformly occur for each of the three datasets. There are no significant differences in OMB biases estimated with the three LSE datasets over cropland and forest surface types for all five AHI surface-sensitive channels. Over the grassland surface type, significant differences (~0.8 K) are found at the 10.4-, 11.2-, and 12.4-μm channels if using the IGBP dataset. Over nonvegetated surface types (e.g., sandy land, gobi, and bare rock), the lack of a monthly variation in IGBP LSE introduces large negative biases for the 3.9- and 8.6-μm channels, which are greater than those from the two other LSE datasets. Thus, improvements in simulating AHI infrared surface-sensitive channels can be made when using spatially and temporally varying LSE estimates.


2018 ◽  
Vol 146 (4) ◽  
pp. 1197-1218
Author(s):  
Michèle De La Chevrotière ◽  
John Harlim

This paper demonstrates the efficacy of data-driven localization mappings for assimilating satellite-like observations in a dynamical system of intermediate complexity. In particular, a sparse network of synthetic brightness temperature measurements is simulated using an idealized radiative transfer model and assimilated to the monsoon–Hadley multicloud model, a nonlinear stochastic model containing several thousands of model coordinates. A serial ensemble Kalman filter is implemented in which the empirical correlation statistics are improved using localization maps obtained from a supervised learning algorithm. The impact of the localization mappings is assessed in perfect-model observing system simulation experiments (OSSEs) as well as in the presence of model errors resulting from the misspecification of key convective closure parameters. In perfect-model OSSEs, the localization mappings that use adjacent correlations to improve the correlation estimated from small ensemble sizes produce robust accurate analysis estimates. In the presence of model error, the filter skills of the localization maps trained on perfect- and imperfect-model data are comparable.


2015 ◽  
Vol 12 (12) ◽  
pp. 13019-13067
Author(s):  
A. Barella-Ortiz ◽  
J. Polcher ◽  
P. de Rosnay ◽  
M. Piles ◽  
E. Gelati

Abstract. L-Band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm. The work exposed compares brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The latter were estimated using a radiative transfer model and state variables from two land surface models: (i) ORganising Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) and (ii) Hydrology – Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL). The radiative transfer model used is the Community Microwave Emission Model (CMEM). A good agreement in the temporal evolution of measured and modelled brightness temperatures is observed. However, their spatial structures are not consistent between them. An Empirical Orthogonal Function analysis of the brightness temperature's error identifies a dominant structure over the South-West of the Iberian Peninsula which evolves during the year and is maximum in Fall and Winter. Hypotheses concerning forcing induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for it at the moment. Further hypotheses are proposed at the end of the paper.


2020 ◽  
Vol 13 (6) ◽  
pp. 3235-3261
Author(s):  
Steven Albers ◽  
Stephen M. Saleeby ◽  
Sonia Kreidenweis ◽  
Qijing Bian ◽  
Peng Xian ◽  
...  

Abstract. Solar radiation is the ultimate source of energy flowing through the atmosphere; it fuels all atmospheric motions. The visible-wavelength range of solar radiation represents a significant contribution to the earth's energy budget, and visible light is a vital indicator for the composition and thermodynamic processes of the atmosphere from the smallest weather scales to the largest climate scales. The accurate and fast description of light propagation in the atmosphere and its lower-boundary environment is therefore of critical importance for the simulation and prediction of weather and climate. Simulated Weather Imagery (SWIm) is a new, fast, and physically based visible-wavelength three-dimensional radiative transfer model. Given the location and intensity of the sources of light (natural or artificial) and the composition (e.g., clear or turbid air with aerosols, liquid or ice clouds, precipitating rain, snow, and ice hydrometeors) of the atmosphere, it describes the propagation of light and produces visually and physically realistic hemispheric or 360∘ spherical panoramic color images of the atmosphere and the underlying terrain from any specified vantage point either on or above the earth's surface. Applications of SWIm include the visualization of atmospheric and land surface conditions simulated or forecast by numerical weather or climate analysis and prediction systems for either scientific or lay audiences. Simulated SWIm imagery can also be generated for and compared with observed camera images to (i) assess the fidelity and (ii) improve the performance of numerical atmospheric and land surface models. Through the use of the latter in a data assimilation scheme, it can also (iii) improve the estimate of the state of atmospheric and land surface initial conditions for situational awareness and numerical weather prediction forecast initialization purposes.


2015 ◽  
Vol 8 (4) ◽  
pp. 1719-1731 ◽  
Author(s):  
W. H. Davies ◽  
P. R. J. North

Abstract. We develop a method to derive aerosol properties over land surfaces using combined spectral and angular information, such as available from ESA Sentinel-3 mission, to be launched in 2015. A method of estimating aerosol optical depth (AOD) using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3. The method aims to improve the estimation of AOD, and to explore the estimation of fine mode fraction (FMF) and single scattering albedo (SSA) over land surfaces by inversion of a coupled surface/atmosphere radiative transfer model. The surface model includes a general physical model of angular and spectral surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values to the physical model. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground-based sun photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.


2015 ◽  
Vol 54 (2) ◽  
pp. 408-422 ◽  
Author(s):  
Gregory S. Elsaesser ◽  
Christian D. Kummerow

AbstractThe Goddard profiling algorithm (GPROF) uses Bayesian probability theory to retrieve rainfall over the global oceans. A critical component of GPROF and most Bayes theorem–based retrieval frameworks is the specification of uncertainty in the observations being utilized to retrieve the parameter of interest. In the case of GPROF, for any sensor, uncertainties in microwave brightness temperatures (Tbs) arise from radiative transfer model errors, satellite sensor noise and/or degradation, and nonlinear, scene-dependent Tb offsets added during sensor intercalibration procedures. All mentioned sources impact sensors in a varying fashion, in part because of sensor-dependent fields of view. It is found that small errors in assumed Tb uncertainty (ranging from 0.57 K at 10 GHz to 2.29 K at 85 GHz) lead to a 3.6% change in the retrieved global-average oceanic rainfall rate, and 10%–20% (20%–40%) shifts in the pixel-level (monthly) frequency distributions for given rainfall bins. A mathematical expression describing the sensitivity of retrieved rainfall to uncertainty is developed here. The strong global sensitivity is linked to rainfall variance scaling systematically as Tb varies. For ocean scenes, the same emission-dominated rainfall–Tb physics used in passive microwave rainfall retrieval is also responsible for the substantial underestimation (overestimation) of global rainfall if uncertainty is overestimated (underestimated). Proper uncertainties are required to quantify variability in surface rainfall, assess long-term trends, and provide robust rainfall benchmarks for general circulation model evaluations. The implications for assessing global and regional biases in active versus passive microwave rainfall products, and for achieving rainfall product agreement among a constellation of orbiting microwave radiometers [employed in the Global Precipitation Measurement (GPM) mission], are also discussed.


2008 ◽  
Vol 52 ◽  
pp. 13-18
Author(s):  
Hui LU ◽  
Toshio KOIKE ◽  
Hiroyuki TSUTSUI ◽  
David Ndegwa KURIA ◽  
Tobias GRAF ◽  
...  

2013 ◽  
Vol 14 (3) ◽  
pp. 765-785 ◽  
Author(s):  
Gabriëlle J. M. De Lannoy ◽  
Rolf H. Reichle ◽  
Valentijn R. N. Pauwels

Abstract A zero-order (tau-omega) microwave radiative transfer model (RTM) is coupled to the Goddard Earth Observing System, version 5 (GEOS-5) catchment land surface model in preparation for the future assimilation of global brightness temperatures (Tb) from the L-band (1.4 GHz) Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions. Simulations using literature values for the RTM parameters result in Tb biases of 10–50 K against SMOS observations. Multiangular SMOS observations during nonfrozen conditions from 1 July 2011 to 1 July 2012 are used to calibrate parameters related to the microwave roughness h, vegetation opacity τ and/or scattering albedo ω separately for each observed 36-km land grid cell. A particle swarm optimization is used to minimize differences in the long-term (climatological) mean values and standard deviations between SMOS observations and simulations, without attempting to reduce the shorter-term (seasonal to daily) errors. After calibration, global Tb simulations for the validation year (1 July 2010 to 1 July 2011) are largely unbiased for multiple incidence angles and both H and V polarization [e.g., the global average absolute difference is 2.7 K for TbH(42.5°), i.e., at 42.5° incidence angle]. The calibrated parameter values depend to some extent on the specific land surface conditions simulated by the GEOS-5 system and on the scale of the SMOS observations, but they also show realistic spatial distributions. Aggregating the calibrated parameter values by vegetation class prior to using them in the RTM maintains low global biases but increases local biases [e.g., the global average absolute difference is 7.1 K for TbH(42.5°)].


2018 ◽  
Vol 66 (1) ◽  
pp. 29-35
Author(s):  
Deepa Roy ◽  
Md Abdus Samad ◽  
SM Quamrul Hassan

In this paper an effort has been made to simulate the monsoon Low Pressure System (LPS) and its associated rainfall event of 16-20 August, 2013 using Weather Research and Forecasting (WRF) model. The model was run for 24-h, 48-h and 72-h in a single domain of 10 km horizontal resolution using The National Centre for Environmental Prediction (NCEP) high-resolution Global Final (FNL) Analysis 6-hourly data using initial and lateral boundary conditions. WRF double-moment 5 class micro physics scheme, Kain–Fritsch (new Eta) cumulus physics scheme,Yonsei University planetary boundary layer scheme, Revised MM5 surface layer physics scheme, Unified Noah LSM as land surface model, Rapid Radiative Transfer Model (RRTM) for long-wave and Dudhia scheme for short-wave scheme are used for the simulation. The performance of the model is evaluated analyzing Mean Sea Level Pressure (MSLP), Wind Pattern, Vorticity, Vertical Wind Shear and Rainfall Distribution. The model successfully captured the low pressure system, initial condition, propagation, landfall time and location reasonably well. The model simulated rainfall amount and associated areas sensibly well compared with the observed data by BMD and Tropical Rainfall Measuring Mission (TRMM). Dhaka Univ. J. Sci. 66(1): 29-35, 2018 (January)


Sign in / Sign up

Export Citation Format

Share Document