scholarly journals Reflection and Transmission of Equatorial Rossby Waves*

2005 ◽  
Vol 35 (3) ◽  
pp. 363-373 ◽  
Author(s):  
Michael A. Spall ◽  
Joseph Pedlosky

Abstract The interaction of equatorial Rossby waves with a western boundary perforated with one or more narrow gaps is investigated using a shallow-water numerical model and supporting theory. It is found that very little of the incident energy flux is reflected into eastward-propagating equatorial Kelvin waves provided that at least one gap is located within approximately a deformation radius of the equator. Because of the circulation theorem around an island, the existence of a second gap off the equator reduces the reflection of short Rossby waves and enhances the transmission of the incident energy into the western basin. The westward energy transmitted past the easternmost island is further reduced upon encountering islands to the west, even if these islands are located entirely within the “shadow” of the easternmost island. A localized patch of wind forcing was also used to generate low-frequency Rossby waves for cases with island configurations representative of the western equatorial Pacific. For both idealized islands and a coastline based on the 200-m isobath, the amount of incident energy reflected into Kelvin waves depends on both the duration of the wind event and the meridional decay scale of the anomalous winds. For wind events of 2-yr duration with a meridional decay scale of 700 km, the reflected energy is 37% of the incident flux, and the energy transmitted into the Indian Ocean is approximately 10% of the incident flux, very close to that predicted by previous theories. For shorter wind events or winds confined more closely to the equator the reflected energy is significantly less.

2006 ◽  
Vol 36 (5) ◽  
pp. 930-944 ◽  
Author(s):  
Dongliang Yuan ◽  
Weiqing Han

Abstract An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.


2018 ◽  
Vol 31 (19) ◽  
pp. 8081-8099 ◽  
Author(s):  
Antonietta Capotondi ◽  
Prashant D. Sardeshmukh ◽  
Lucrezia Ricciardulli

El Niño–Southern Oscillation (ENSO) is commonly viewed as a low-frequency tropical mode of coupled atmosphere–ocean variability energized by stochastic wind forcing. Despite many studies, however, the nature of this broadband stochastic forcing and the relative roles of its high- and low-frequency components in ENSO development remain unclear. In one view, the high-frequency forcing associated with the subseasonal Madden–Julian oscillation (MJO) and westerly wind events (WWEs) excites oceanic Kelvin waves leading to ENSO. An alternative view emphasizes the role of the low-frequency stochastic wind components in directly forcing the low-frequency ENSO modes. These apparently distinct roles of the wind forcing are clarified here using a recently released high-resolution wind dataset for 1990–2015. A spectral analysis shows that although the high-frequency winds do excite high-frequency Kelvin waves, they are much weaker than their interannual counterparts and are a minor contributor to ENSO development. The analysis also suggests that WWEs should be viewed more as short-correlation events with a flat spectrum at low frequencies that can efficiently excite ENSO modes than as strictly high-frequency events that would be highly inefficient in this regard. Interestingly, the low-frequency power of the rapid wind forcing is found to be higher during El Niño than La Niña events, suggesting a role also for state-dependent (i.e., multiplicative) noise forcing in ENSO dynamics.


2009 ◽  
Vol 39 (5) ◽  
pp. 1115-1132 ◽  
Author(s):  
Dongliang Yuan ◽  
Hailong Liu

Abstract Long-wave dynamics of the interannual variations of the equatorial Indian Ocean circulation are studied using an ocean general circulation model forced by the assimilated surface winds and heat flux of the European Centre for Medium-Range Weather Forecasts. The simulation has reproduced the sea level anomalies of the Ocean Topography Experiment (TOPEX)/Poseidon altimeter observations well. The equatorial Kelvin and Rossby waves decomposed from the model simulation show that western boundary reflections provide important negative feedbacks to the evolution of the upwelling currents off the Java coast during Indian Ocean dipole (IOD) events. Two downwelling Kelvin wave pulses are generated at the western boundary during IOD events: the first is reflected from the equatorial Rossby waves and the second from the off-equatorial Rossby waves in the southern Indian Ocean. The upwelling in the eastern basin during the 1997–98 IOD event is weakened by the first Kelvin wave pulse and terminated by the second. In comparison, the upwelling during the 1994 IOD event is terminated by the first Kelvin wave pulse because the southeasterly winds off the Java coast are weak at the end of 1994. The atmospheric intraseasonal forcing, which plays an important role in inducing Java upwelling during the early stage of an IOD event, is found to play a minor role in terminating the upwelling off the Java coast because the intraseasonal winds are either weak or absent during the IOD mature phase. The equatorial wave analyses suggest that the upwelling off the Java coast during IOD events is terminated primarily by western boundary reflections.


2010 ◽  
Vol 40 (6) ◽  
pp. 1302-1319 ◽  
Author(s):  
Angélique Melet ◽  
Lionel Gourdeau ◽  
William S. Kessler ◽  
Jacques Verron ◽  
Jean-Marc Molines

Abstract In the southwest Pacific, thermocline waters connecting the tropics to the equator via western boundary currents (WBCs) transit through the Solomon Sea. Despite its importance in feeding the Equatorial Undercurrent (EUC) and its related potential influence on the low-frequency modulation of ENSO, the circulation inside the Solomon Sea is poorly documented. A model has been implemented to analyze the mean and the seasonal variability of the Solomon Sea thermocline circulation. The circulation involves an inflow from the open southern Solomon Sea, which is distributed via WBCs between the three north exiting straits of the semiclosed Solomon Sea. The system of WBCs is found to be complex. Its main feature, the New Guinea Coastal Undercurrent, splits in two branches: one flowing through Vitiaz Strait and the other one, the New Britain Coastal Undercurrent (NBCU), exiting at Solomon Strait. East of the Solomon Sea, the encounter of the South Equatorial Current (SEC) with the Solomon Islands forms a previously unknown current, which the authors call the Solomon Islands Coastal Undercurrent (SICU). The NBCU, SEC, and SICU participate in the feeding of the New Ireland Coastal Undercurrent (NICU), which retroflects to the Equatorial Undercurrent, providing the most direct western boundary EUC connection, which is particularly active in June–August. The Solomon Sea WBC seasonal variability results from the combination of equatorial dynamics, remotely forced Rossby waves north of 10°S, and the spinup and spindown of the subtropical gyre as a response of Rossby waves forced south of 10°S.


2020 ◽  
Vol 77 (5) ◽  
pp. 1575-1582 ◽  
Author(s):  
Kerry Emanuel

Abstract A recently developed linear model of eastward-propagating disturbances has two separate unstable modes: convectively coupled Kelvin waves destabilized by the wind dependence of the surface enthalpy flux, and slow, MJO-like modes destabilized by cloud–radiation interaction and driven eastward by surface enthalpy fluxes. This latter mode survives the weak temperature gradient (WTG) approximation and has a time scale dictated by the time it takes for surface fluxes to moisten tropospheric columns. Here we extend that model to include higher-order modes and show that planetary-scale low-frequency waves with more complex structures can also be amplified by cloud–radiation interactions. While most of these waves survive the WTG approximation, their frequencies and growth rates are seriously compromised by that approximation. Applying instead the assumption of zonal geostrophy results in a better approximation to the full spectrum of modes. For small cloud–radiation and surface flux feedbacks, Kelvin waves and equatorial Rossby waves are destabilized, but when these feedbacks are strong enough, the frequencies do not lie close to classical equatorial dispersion curves except in the case of higher-frequency Kelvin and Yanai waves. An eastward-propagating n = 1 mode, in particular, has a structure resembling the observed structure of the MJO.


2021 ◽  
Vol 893 (1) ◽  
pp. 012015
Author(s):  
P Wu ◽  
Y Fukutomi ◽  
K Kikuchi

Abstract This study examined the cause of a record torrential rain event over the western coast of Sumatra Island in March 2016. The influence of atmospheric equatorial waves (EWs) and the characteristics of the EWs were investigated. Analysis of the Japanese 55-year Reanalysis data (JRA-55) and precipitation data from the Global Precipitation Measurement (GPM) satellite showed that the event was caused by the combined effects of Kelvin waves, equatorial Rossby waves, and westward inertio-gravity (WIG) waves. An examination of the characteristics of the EWs revealed that the Kelvin waves had longitudinal scales of ~6,000 km, with a period of ~6 days and phase speed of ~12 m s-1, which was typical of the convectively coupled Kelvin waves in this region. The WIG waves had a scale of ~2,500 km, with a period of 2.5 days and a relatively fast phase speed of 12~13 m s-1. Heavy precipitation occurred when an eastward Kelvin wave from the Indian Ocean encountered a westward inertio-gravity (WIG) over Sumatra Island. It was concluded that along with the Kelvin and equatorial Rossby waves, the WIG waves might have played a major role in the formation of the extreme precipitation event.


2018 ◽  
Vol 31 (14) ◽  
pp. 5461-5483 ◽  
Author(s):  
Han-Ching Chen ◽  
Chung-Hsiung Sui ◽  
Yu-Heng Tseng ◽  
Bohua Huang

This study investigates the sudden reversal of anomalous zonal equatorial transport above thermocline at the peak phase of ENSO. The oceanic processes associated with zonal transport are separated into low-frequency ENSO cycle and high-frequency oceanic wave processes. Both processes can generate a reversal of equatorial zonal current at the ENSO peak phase, which is a trigger for the rapid termination of ENSO events. For the low-frequency process, zonal transport exhibits slower and basinwide evolution. During the developing phase of El Niño (La Niña), eastward (westward) transport prevails in the central-eastern Pacific, which enhances ENSO. At the peak of ENSO, a basinwide reversal of the zonal transport resulting from the recharge–discharge process occurs and weakens the existing SST anomalies. High-frequency zonal transport presents clear eastward propagation related to Kelvin wave propagation at the equator, reflection at the eastern boundary, and the westward propagating Rossby waves. The major westerly wind bursts (easterly wind surges) occur in late boreal summer and fall with coincident downwelling (upwelling) Kelvin waves for El Niño (La Niña) events. After the peak of El Niño (La Niña), Kelvin waves reach the eastern boundary in boreal winter and reflect as off-equatorial Rossby waves; then, the zonal transport switches from eastward (westward) to westward (eastward). The high-frequency zonal transport can be represented by equatorial wave dynamics captured by the first three EOFs based on the high-pass-filtered equatorial thermocline. The transport anomaly during the decaying phase is dominated by the low-frequency process in El Niño. However, the transport anomaly is caused by both low- and high-frequency processes during La Niña.


2021 ◽  
Author(s):  
Fei Liu ◽  
Bin Wang ◽  
Yu Ouyang ◽  
Hui Wang ◽  
Shaobo Qiao ◽  
...  

Abstract Accurate prediction of global land monsoon rainfall on a subseasonal (2-8 weeks) time scale has become a worldwide demand. Current forecasts of weekly-mean rainfall in most monsoon regions, however, have limited skills beyond two weeks. Given that two-thirds of the world’s population lives in the monsoon regions, this challenge calls for a more profound understanding of monsoon intraseasonal variability (ISVs). Our comparison of individual land monsoons shows that the high-frequency (HF; 8-20 days) ISV, crucial for the Week 2 and Week 3 predictions, accounts for about 53-70% of the total (8-70 days) ISV in various monsoons, and the low-frequency (LF; 20-70 days) ISV has a relatively high contribution over Australia (AU; 47%), South Asia (SA; 43%), and South America (SAM; 40%) monsoons. The leading modes of HFISVs in Northern Hemisphere (NH) monsoons primarily originate from convectively coupled equatorial Rossby waves (Asia), mixed Rossby-gravity waves (North America, NAM), and Kelvin waves (northern Africa, NAF), while from mid-latitude wave trains for Southern Hemisphere (SH) monsoons and East Asian (EA) monsoon. The Madden-Julian Oscillation (MJO) directly regulates LFISVs in the Asian-Australian monsoon while affecting the American and African monsoons by exciting Kelvin waves and mid-latitude teleconnections. During the past four decades, the HF (LF) ISVs have considerably intensified over the Asian (Asian-Australian) monsoon but weakened over the American (SAM) monsoon. Subseasonal-to-seasonal (S2S) prediction models do exhibit higher subseasonal (Weekly 2-Weekly 4) prediction skills over SA, AU, and SAM monsoons that have larger LFISV contributions than the other monsoons. The results suggest an urgent need to improve the simulation of convectively coupled equatorial waves and two-way interactions between regional monsoon ISVs and mid-latitude processes and between MJO and regional monsoons, especially under the global warming scenarios.


Sign in / Sign up

Export Citation Format

Share Document