scholarly journals Slow Modes of the Equatorial Waveguide

2020 ◽  
Vol 77 (5) ◽  
pp. 1575-1582 ◽  
Author(s):  
Kerry Emanuel

Abstract A recently developed linear model of eastward-propagating disturbances has two separate unstable modes: convectively coupled Kelvin waves destabilized by the wind dependence of the surface enthalpy flux, and slow, MJO-like modes destabilized by cloud–radiation interaction and driven eastward by surface enthalpy fluxes. This latter mode survives the weak temperature gradient (WTG) approximation and has a time scale dictated by the time it takes for surface fluxes to moisten tropospheric columns. Here we extend that model to include higher-order modes and show that planetary-scale low-frequency waves with more complex structures can also be amplified by cloud–radiation interactions. While most of these waves survive the WTG approximation, their frequencies and growth rates are seriously compromised by that approximation. Applying instead the assumption of zonal geostrophy results in a better approximation to the full spectrum of modes. For small cloud–radiation and surface flux feedbacks, Kelvin waves and equatorial Rossby waves are destabilized, but when these feedbacks are strong enough, the frequencies do not lie close to classical equatorial dispersion curves except in the case of higher-frequency Kelvin and Yanai waves. An eastward-propagating n = 1 mode, in particular, has a structure resembling the observed structure of the MJO.

2014 ◽  
Vol 71 (6) ◽  
pp. 2186-2203 ◽  
Author(s):  
Wei Zhong ◽  
Da-Lin Zhang

Abstract In this study, the linearized, f-plane, shallow-water equations are discretized into a matrix eigenvalue problem to examine the full spectrum of free waves on barotropic (monopolar and hollow) vortices. A typical wave spectrum for weak vortices shows a continuous range between zero and an advective frequency associated with vortex Rossby waves (VRWs) and two discrete ranges at both sides associated with inertio-gravity waves (IGWs). However, when the vortex intensity reaches a critical value, higher-frequency waves will be “red shifted” into the continuous spectrum, while low-frequency waves will be “violet shifted” into the discrete spectrum, leading to the emergence of mixed vortex Rossby–inertio-gravity waves (VRIGWs). Results show significant (little) radial wavelike structures of perturbation variables for IGWs (VRWs) with greater (much smaller) divergence than vorticity and the hybrid IGW–VRW radial structures with equal amplitudes of vorticity and divergence for mixed VRIGWs. In addition, VRWs only occur within a critical radius at which the perturbation azimuthal velocity is discontinuous. As the azimuthal wavenumber increases, lower-frequency waves tend to exhibit more mixed-wave characteristics, whereas higher-frequency waves will be more of the IGW type. Two-dimensional wave solutions show rapid outward energy dispersion of IGWs and slower dispersion of VRWs and mixed VRIGWs in the core region. These solutions are shown to resemble the previous analytical solutions, except for certain structural differences caused by the critical radius. It is concluded that mixed VRIGWs should be common in the eyewall and spiral rainbands of intense tropical cyclones. Some different wave behaviors associated with the monopolar and hollow vortices are also discussed.


2005 ◽  
Vol 35 (3) ◽  
pp. 363-373 ◽  
Author(s):  
Michael A. Spall ◽  
Joseph Pedlosky

Abstract The interaction of equatorial Rossby waves with a western boundary perforated with one or more narrow gaps is investigated using a shallow-water numerical model and supporting theory. It is found that very little of the incident energy flux is reflected into eastward-propagating equatorial Kelvin waves provided that at least one gap is located within approximately a deformation radius of the equator. Because of the circulation theorem around an island, the existence of a second gap off the equator reduces the reflection of short Rossby waves and enhances the transmission of the incident energy into the western basin. The westward energy transmitted past the easternmost island is further reduced upon encountering islands to the west, even if these islands are located entirely within the “shadow” of the easternmost island. A localized patch of wind forcing was also used to generate low-frequency Rossby waves for cases with island configurations representative of the western equatorial Pacific. For both idealized islands and a coastline based on the 200-m isobath, the amount of incident energy reflected into Kelvin waves depends on both the duration of the wind event and the meridional decay scale of the anomalous winds. For wind events of 2-yr duration with a meridional decay scale of 700 km, the reflected energy is 37% of the incident flux, and the energy transmitted into the Indian Ocean is approximately 10% of the incident flux, very close to that predicted by previous theories. For shorter wind events or winds confined more closely to the equator the reflected energy is significantly less.


2021 ◽  
Author(s):  
Fei Liu ◽  
Bin Wang ◽  
Yu Ouyang ◽  
Hui Wang ◽  
Shaobo Qiao ◽  
...  

Abstract Accurate prediction of global land monsoon rainfall on a subseasonal (2-8 weeks) time scale has become a worldwide demand. Current forecasts of weekly-mean rainfall in most monsoon regions, however, have limited skills beyond two weeks. Given that two-thirds of the world’s population lives in the monsoon regions, this challenge calls for a more profound understanding of monsoon intraseasonal variability (ISVs). Our comparison of individual land monsoons shows that the high-frequency (HF; 8-20 days) ISV, crucial for the Week 2 and Week 3 predictions, accounts for about 53-70% of the total (8-70 days) ISV in various monsoons, and the low-frequency (LF; 20-70 days) ISV has a relatively high contribution over Australia (AU; 47%), South Asia (SA; 43%), and South America (SAM; 40%) monsoons. The leading modes of HFISVs in Northern Hemisphere (NH) monsoons primarily originate from convectively coupled equatorial Rossby waves (Asia), mixed Rossby-gravity waves (North America, NAM), and Kelvin waves (northern Africa, NAF), while from mid-latitude wave trains for Southern Hemisphere (SH) monsoons and East Asian (EA) monsoon. The Madden-Julian Oscillation (MJO) directly regulates LFISVs in the Asian-Australian monsoon while affecting the American and African monsoons by exciting Kelvin waves and mid-latitude teleconnections. During the past four decades, the HF (LF) ISVs have considerably intensified over the Asian (Asian-Australian) monsoon but weakened over the American (SAM) monsoon. Subseasonal-to-seasonal (S2S) prediction models do exhibit higher subseasonal (Weekly 2-Weekly 4) prediction skills over SA, AU, and SAM monsoons that have larger LFISV contributions than the other monsoons. The results suggest an urgent need to improve the simulation of convectively coupled equatorial waves and two-way interactions between regional monsoon ISVs and mid-latitude processes and between MJO and regional monsoons, especially under the global warming scenarios.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1395
Author(s):  
Danila Kostarev ◽  
Dmitri Klimushkin ◽  
Pavel Mager

We consider the solutions of two integrodifferential equations in this work. These equations describe the ultra-low frequency waves in the dipol-like model of the magnetosphere in the gyrokinetic framework. The first one is reduced to the homogeneous, second kind Fredholm equation. This equation describes the structure of the parallel component of the magnetic field of drift-compression waves along the Earth’s magnetic field. The second equation is reduced to the inhomogeneous, second kind Fredholm equation. This equation describes the field-aligned structure of the parallel electric field potential of Alfvén waves. Both integral equations are solved numerically.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J.-F. Ripoll ◽  
T. Farges ◽  
D. M. Malaspina ◽  
G. S. Cunningham ◽  
E. H. Lay ◽  
...  

AbstractLightning superbolts are the most powerful and rare lightning events with intense optical emission, first identified from space. Superbolt events occurred in 2010-2018 could be localized by extracting the high energy tail of the lightning stroke signals measured by the very low frequency ground stations of the World-Wide Lightning Location Network. Here, we report electromagnetic observations of superbolts from space using Van Allen Probes satellite measurements, and ground measurements, and with two events measured both from ground and space. From burst-triggered measurements, we compute electric and magnetic power spectral density for very low frequency waves driven by superbolts, both on Earth and transmitted into space, demonstrating that superbolts transmit 10-1000 times more powerful very low frequency waves into space than typical strokes and revealing that their extreme nature is observed in space. We find several properties of superbolts that notably differ from most lightning flashes; a more symmetric first ground-wave peak due to a longer rise time, larger peak current, weaker decay of electromagnetic power density in space with distance, and a power mostly confined in the very low frequency range. Their signal is absent in space during day times and is received with a long-time delay on the Van Allen Probes. These results have implications for our understanding of lightning and superbolts, for ionosphere-magnetosphere wave transmission, wave propagation in space, and remote sensing of extreme events.


1968 ◽  
Vol 46 (10) ◽  
pp. S638-S641 ◽  
Author(s):  
D. B. Melrose

The acceleration of ions from thermal velocities is analyzed to determine conditions under which heavy ions can be preferentially accelerated. Two accelerating mechanisms involving high-and low-frequency hydromagnetic waves respectively are considered. Preferential acceleration of heavy ions occurs for high-frequency waves if the frequency spectrum falls off faster than (frequency)−1. For the low-frequency waves heavy ions are less effectively accelerated than lighter ions. However, very heavy ions can be preferentially accelerated, the abundances of the very heavy ions being enhanced by a factor Ai over the thermal abundances. Acceleration of ions in the envelope of the Crab nebula is considered as an example.


Sign in / Sign up

Export Citation Format

Share Document