scholarly journals Potential Vorticity Structure in the North Atlantic Western Boundary Current from Underwater Glider Observations

2016 ◽  
Vol 46 (1) ◽  
pp. 327-348 ◽  
Author(s):  
Robert E. Todd ◽  
W. Brechner Owens ◽  
Daniel L. Rudnick

AbstractPotential vorticity structure in two segments of the North Atlantic’s western boundary current is examined using concurrent, high-resolution measurements of hydrography and velocity from gliders. Spray gliders occupied 40 transects across the Loop Current in the Gulf of Mexico and 11 transects across the Gulf Stream downstream of Cape Hatteras. Cross-stream distributions of the Ertel potential vorticity and its components are calculated for each transect under the assumptions that all flow is in the direction of measured vertically averaged currents and that the flow is geostrophic. Mean cross-stream distributions of hydrographic properties, potential vorticity, and alongstream velocity are calculated for both the Loop Current and the detached Gulf Stream in both depth and density coordinates. Differences between these mean transects highlight the downstream changes in western boundary current structure. As the current increases its transport downstream, upper-layer potential vorticity is generally reduced because of the combined effects of increased anticyclonic relative vorticity, reduced stratification, and increased cross-stream density gradients. The only exception is within the 20-km-wide cyclonic flank of the Gulf Stream, where intense cyclonic relative vorticity results in more positive potential vorticity than in the Loop Current. Cross-stream gradients of mean potential vorticity satisfy necessary conditions for both barotropic and baroclinic instability within the western boundary current. Instances of very low or negative potential vorticity, which predispose the flow to various overturning instabilities, are observed in individual transects across both the Loop Current and the Gulf Stream.

2016 ◽  
Vol 46 (8) ◽  
pp. 2493-2527 ◽  
Author(s):  
Linhao Zhong ◽  
Lijuan Hua ◽  
Dehai Luo

AbstractIn this paper, an ideal model of the role of mesoscale eddies in the Kuroshio intruding into the South China Sea (SCS) is developed, which represents the northwestern Pacific and the SCS as two rectangular basins connected by a gap. In the case of considering only intrinsic ocean variability, a time-dependent western boundary current (WBC) driven by steady wind is modeled under both eddy-resolving and noneddy-resolving resolutions. Almost all simulated WBCs intrude into the adjacent sea in the form of the Loop Current with multiple-state transitions and eddy-shedding processes, which have aperiodic variations on intraseasonal or interannual scales, determined by the eddy-induced WBC variation. For the parameters considered in this paper, the WBC intrusion exhibits a 30–90-day cycle in the presence of the subgrid-scale eddy forcing (SSEF) but a 300–500-day cycle in the absence of SSEF. Moreover, the roles of the grid-scale and subgrid-scale eddies in the WBC intrusion are studied by using the dynamically consistent decomposition developed by Berloff. Based on the large-sample composite analysis of the intrusion events, it is found that the Loop Current intensity is mainly determined by baroclinic processes through grid-scale, eddy–eddy interaction and subgrid-scale, eddy–flow interaction. The intrusion position and period are mainly regulated by the SSEF to the west of gap, where the balance between relative vorticity and isopycnal thickness SSEFs determines eddy detachment. Generally, the relative vorticity SSEF therein tends to induce WBC intrusion. However, the isopycnal thickness SSEF tends to induce eddy shedding, and WBC retreat thus determines the intrusion cycle through counteracting relative vorticity SSEF.


2017 ◽  
Vol 44 (20) ◽  
pp. 10,530-10,539 ◽  
Author(s):  
Zhiyu Liu ◽  
Qiang Lian ◽  
Fangtao Zhang ◽  
Lei Wang ◽  
Mingming Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document