vorticity structure
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 1)

2022 ◽  
Author(s):  
William Stanley Torgerson ◽  
Juliane Schwendike ◽  
Andrew Ross ◽  
Chris Short

Abstract. Intensity fluctuations observed during a period of rapid intensification of Hurricane Irma (2017) between 04 September and 06 September were investigated in a detailed modelling study using an ensemble of Met Office Unified Model (MetUM) convection permitting forecasts. These intensity fluctuations consisted of alternating weakening and strengthening phases. During weakening phases the tropical cyclone temporarily paused its intensification. It was found that weakening phases were associated with a change in the potential vorticity structure, with a tendency for it to become more monopolar. Convection during strengthening phases was associated with isolated local regions of high relative vorticity and vertical velocity in the eyewall, while during weakening phases the storm became more azimuthally symmetric with weaker convection spread more evenly. The boundary layer was found to play an important role in the cause of the intensity fluctuations with an increase in the agradient wind within the boundary layer causing a spin--down just above the boundary layer during the weakening phases whereas during the strengthening phases the agradient wind reduces. This study offers new explanations for why these fluctuations occur and what causes them.


Icarus ◽  
2021 ◽  
Vol 354 ◽  
pp. 114030 ◽  
Author(s):  
Jason Sharkey ◽  
Nicholas A. Teanby ◽  
Melody Sylvestre ◽  
Dann M. Mitchell ◽  
William J.M. Seviour ◽  
...  

2020 ◽  
Vol 1435 ◽  
pp. 012030
Author(s):  
Aleksei Zinchenko ◽  
Alexander Sorin ◽  
Oleg Teryaev ◽  
Mircea Baznat

2018 ◽  
Vol 98 (2) ◽  
Author(s):  
Xiao-Liang Xia ◽  
Hui Li ◽  
Zebo Tang ◽  
Qun Wang

2016 ◽  
Vol 46 (1) ◽  
pp. 327-348 ◽  
Author(s):  
Robert E. Todd ◽  
W. Brechner Owens ◽  
Daniel L. Rudnick

AbstractPotential vorticity structure in two segments of the North Atlantic’s western boundary current is examined using concurrent, high-resolution measurements of hydrography and velocity from gliders. Spray gliders occupied 40 transects across the Loop Current in the Gulf of Mexico and 11 transects across the Gulf Stream downstream of Cape Hatteras. Cross-stream distributions of the Ertel potential vorticity and its components are calculated for each transect under the assumptions that all flow is in the direction of measured vertically averaged currents and that the flow is geostrophic. Mean cross-stream distributions of hydrographic properties, potential vorticity, and alongstream velocity are calculated for both the Loop Current and the detached Gulf Stream in both depth and density coordinates. Differences between these mean transects highlight the downstream changes in western boundary current structure. As the current increases its transport downstream, upper-layer potential vorticity is generally reduced because of the combined effects of increased anticyclonic relative vorticity, reduced stratification, and increased cross-stream density gradients. The only exception is within the 20-km-wide cyclonic flank of the Gulf Stream, where intense cyclonic relative vorticity results in more positive potential vorticity than in the Loop Current. Cross-stream gradients of mean potential vorticity satisfy necessary conditions for both barotropic and baroclinic instability within the western boundary current. Instances of very low or negative potential vorticity, which predispose the flow to various overturning instabilities, are observed in individual transects across both the Loop Current and the Gulf Stream.


2012 ◽  
Vol 69 (8) ◽  
pp. 2414-2432 ◽  
Author(s):  
Michael M. Bell ◽  
Michael T. Montgomery ◽  
Wen-Chau Lee

Abstract Multiplatform observations of Hurricane Rita (2005) were collected as part of the Hurricane Rainband and Intensity Change Experiment (RAINEX) field campaign during a concentric eyewall stage of the storm’s life cycle that occurred during 21–22 September. Satellite, aircraft, dropwindsonde, and Doppler radar data are used here to examine the symmetric evolution of the hurricane as it underwent eyewall replacement. During the approximately 1-day observation period, developing convection associated with the secondary eyewall became more symmetric and contracted inward. Latent heating in the emergent secondary eyewall led to the development of a distinct toroidal (overturning) circulation with inertially constrained radial inflow above the boundary layer and compensating subsidence in the moat region, properties that are consistent broadly with the balanced vortex response to an imposed ring of diabatic heating outside the primary eyewall. The primary eyewall’s convection became more asymmetric during the observation period, but the primary eyewall was still the dominant swirling wind and vorticity structure throughout the period. The observed structure and evolution of Rita’s secondary eyewall suggest that spinup of the tangential winds occurred both within and above the boundary layer, and that both balanced and unbalanced dynamical processes played an important role. Although Rita’s core intensity decreased during the observation period, the observations indicate a 125% increase in areal extent of hurricane-force winds and a 19% increase in integrated kinetic energy resulting from the eyewall replacement.


2011 ◽  
Vol 671 ◽  
pp. 52-95 ◽  
Author(s):  
PETER J. DIAMESSIS ◽  
GEOFFREY R. SPEDDING ◽  
J. ANDRZEJ DOMARADZKI

The mean velocity profile scaling and the vorticity structure of a stably stratified, initially turbulent wake of a towed sphere are studied numerically using a high-accuracy spectral multi-domain penalty method model. A detailed initialization procedure allows a smooth, minimum-transient transition into the non-equilibrium (NEQ) regime of wake evolution. A broad range of Reynolds numbers,Re= UD/ν ∈ [5 × 103, 105] and internal Froude numbers,Fr= 2U/(ND) ∈ [4, 64] (U,Dare characteristic velocity and length scales, andNis the buoyancy frequency) is examined. The maximum value ofReand the range ofFrvalues considered allow extrapolation of the results to geophysical and naval applications.At higherRe, the NEQ regime, where three-dimensional turbulence adjusts towards a quasi-two-dimensional, buoyancy-dominated flow, lasts significantly longer than at lowerRe. AtRe= 5 × 103, vertical fluid motions are rapidly suppressed, but atRe= 105, secondary Kelvin–Helmholtz instabilities and ensuing turbulence are clearly observed up toNt≈ 100. The secondary motions intensify with increasing stratification strength and have significant vertical kinetic energy.These results agree with existing scaling of buoyancy-driven shear onRe/Fr2and suggest that, in the field, the NEQ regime may last up toNt≈ 1000. At a given highRevalue, during the NEQ regime, the scale separation between Ozmidov and Kolmogorov scale is independent ofFr. This first systematic numerical investigation of stratified turbulence (as defined by Lilly,J. Atmos. Sci.vol. 40, 1983, p. 749), in a controlled localized flow with turbulent initial conditions suggests that a reconsideration of the commonly perceived life cycle of a stratified turbulent event may be in order for the correct turbulence parametrizations of such flows in both geophysical and operational contexts.


Sign in / Sign up

Export Citation Format

Share Document