scholarly journals The Total Energy Flux Leaving the Ocean’s Mixed Layer

2016 ◽  
Vol 46 (6) ◽  
pp. 1885-1900 ◽  
Author(s):  
Antonija Rimac ◽  
Jin-Song von Storch ◽  
Carsten Eden

AbstractThe total energy flux leaving the ocean’s spatially and seasonally varying mixed layer is estimated using a global ⅝1/10° ocean general circulation model. From the total wind-power input of 3.33 TW into near-inertial waves (0.35 TW), subinertial fluctuations (0.87 TW), and the time-mean circulation (2.11 TW), 0.92 TW leave the mixed layer, with 0.04 TW (11.4%) due to near-inertial motions, 0.07 TW (8.04%) due to subinertial fluctuations, and 0.81 TW (38.4%) due to time-mean motions. Of the 0.81 TW from the time-mean motions, 0.5 TW result from the projection of the horizontal flux onto the sloped bottom of the mixed layer. This projection is negligible for the transient fluxes. The spatial structure of the vertical flux is determined principally by the wind stress curl. The mean and subinertial fluxes leaving the mixed layer are approximately 40%–50% smaller than the respective fluxes across the Ekman layer according to the method proposed by Stern. The fraction related to transient fluctuations tends to decrease with increasing depth of the mixed layer and with increasing strength of wind stress variability.

2021 ◽  
Author(s):  
Kwatra Sadhvi ◽  
Iyyappan Suresh ◽  
Takeshi Izumo ◽  
Jérôme Vialard ◽  
Matthieu Lengaigne ◽  
...  

<p>The Great Whirl (GW) is a quasi-permanent anticyclonic eddy that appears every summer monsoon in the western Arabian Sea off the horn of Africa. It generally forms in June, peaks in July-August, and dissipates afterward. While the annual cycle of the GW has been previously described, its year-to-year variability has been less explored. Satellite observations reveal that the leading mode of summer interannual sea-level variability in this region is associated with a typically ~100-km northward or southward shift of the GW. This shift is associated with coherent sea surface temperature and surface chlorophyll signals, with warmer SST and reduced marine primary productivity in regions with positive sea level anomalies and vice versa. Eddy-permitting (~25 km) and eddy-resolving (~10 km) ocean general circulation model simulations reproduce the observed pattern reasonably well, even in the absence of interannual variations in the surface forcing. This implies that the GW interannual variability partly arises from oceanic internal instabilities. Ensemble oceanic simulations further reveal that this stochastic oceanic intrinsic variability and the deterministic response to wind forcing each contribute to ~50% of the total GW interannual variability in July-August. The deterministic part appears to be related to the oceanic response  to Somalia alongshore wind stress and offshore wind-stress curl variations during the monsoon onset projecting onto the GW structure, and getting amplified by oceanic instabilities. After August, the stochastic component dominates the GW variability.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 649
Author(s):  
Ibrahima Camara ◽  
Juliette Mignot ◽  
Nicolas Kolodziejczyk ◽  
Teresa Losada ◽  
Alban Lazar

This study investigates the physical processes controlling the mixed layer buoyancy using a regional configuration of an ocean general circulation model. Processes are quantified by using a linearized equation of state, a mixed-layer heat, and a salt budget. Model results correctly reproduce the observed seasonal near-surface density tendencies. The results indicate that the heat flux is located poleward of 10° of latitude, which is at least three times greater than the freshwater flux that mainly controls mixed layer buoyancy. During boreal spring-summer of each hemisphere, the freshwater flux partly compensates the heat flux in terms of buoyancy loss while, during the fall-winter, they act together. Under the seasonal march of the Inter-tropical Convergence Zone and in coastal areas affected by the river, the contribution of ocean processes on the upper density becomes important. Along the north Brazilian coast and the Gulf of Guinea, horizontal and vertical processes involving salinity are the main contributors to an upper water change with a contribution of at least twice as much the temperature. At the equator and along the Senegal-Mauritanian coast, vertical processes are the major oceanic contributors. This is mainly due to the vertical gradient of temperature at the mixed layer base in the equator while the salinity one dominates along the Senegal-Mauritania coast.


2010 ◽  
Vol 40 (2) ◽  
pp. 340-353 ◽  
Author(s):  
Bo Young Yim ◽  
Yign Noh ◽  
Bo Qiu ◽  
Sung Hyup You ◽  
Jong Hwan Yoon

Abstract The vertical structure of meridional eddy heat transport (EHT) of the North Pacific was investigated by analyzing the results from an eddy-resolving ocean general circulation model (OGCM) with a horizontal resolution of , while comparing with previous simulation results and observation data. In particular, the spatial and temporal variation of the effective depth of EHT He was investigated, which is defined by the depth integrated EHT (D-EHT) divided by EHT at the surface. It was found that the annual mean value of He is proportional to the eddy kinetic energy (EKE) level at the surface in general. However, its seasonal variation is controlled by the mixed layer depth (MLD) in the extratropical ocean (>20°N). Examination of the simulated eddy structures reveals that the temperature associated with mesoscale eddies is radically modified by the surface forcing in the mixed layer, while the velocity field is not, and the consequent enhanced misalignment of temperature and velocity anomalies leads to the radical change of EHT across the seasonal thermocline.


2001 ◽  
Vol 58 (4) ◽  
pp. 703-722 ◽  
Author(s):  
S P Haigh ◽  
K L Denman ◽  
W W Hsieh

To investigate the hypothesis that the 1976 "regime shift" in North Pacific fish populations resulted from climatic change propagating up the fisheries food web, we have embedded a four-component planktonic ecosystem model in an ocean general circulation model. The Miami isopycnic model (MICOM) has been implemented on a 2° grid over the domain from 18°S to 61°N, with a Kraus–Turner-type mixed layer model overlaying 10 isopycnal layers. An initial baseline run with forcing for the period 1952–1988 reasonably reproduces the spatial patterns and seasonal changes in SeaWiFS images. Estimates of annual net and export production compare well with contemporary observations of primary and export production at Ocean Station Papa in the subarctic North Pacific but are low by a factor of 8–10 at station ALOHA near Hawaii. Two subsequent runs with forcing for the periods 1952–1975 and 1977–1988 show the main gyres to strengthen after 1976 with large areas of increased mixed layer depth. In the light-limited subarctic, limited areas of shallower spring mixed layer produced increased phytoplankton biomass, whereas in the nutrient-limited subtropical gyre, increased nutrients (or migration of the subarctic front and the equatorial current system into the gyre) after 1976 correlated with increased plankton biomass.


2007 ◽  
Vol 64 (5) ◽  
pp. 1680-1693 ◽  
Author(s):  
Dargan M. W. Frierson ◽  
Isaac M. Held ◽  
Pablo Zurita-Gotor

Abstract A simplified moist general circulation model is used to study changes in the meridional transport of moist static energy by the atmosphere as the water vapor content is increased. The key assumptions of the model are gray radiation, with water vapor and other constituents having no effect on radiative transfer, and mixed layer aquaplanet boundary conditions, implying that the atmospheric meridional energy transport balances the net radiation at the top of the atmosphere. These simplifications allow the authors to isolate the effect of moisture on energy transports by baroclinic eddies in a relatively simple setting. The authors investigate the partition of moist static energy transport in the model into dry static energy and latent energy transports as water vapor concentrations are increased, by varying a constant in the Clausius–Clapeyron relation. The increase in the poleward moisture flux is rather precisely compensated by a reduction in the dry static energy flux. These results are interpreted with diffusive energy balance models (EBMs). The simplest of these is an analytic model that has the property of exact invariance of total energy flux as the moisture content is changed, but the assumptions underlying this model are not accurately satisfied by the GCM. A more complex EBM that includes expressions for the diffusivity, length scale, velocity scale, and latitude of maximum baroclinic eddy activity provides a better fit to the GCM’s behavior.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Vinu Valsala ◽  
Shamil Maksyutov

A surface pathway of the subsurface Indonesian Throughflow (ITF) in the southeastern Indian Ocean is proposed using a combined analysis of Lagrangian particles and passive tracers derived from two independent tools: an Ocean General Circulation Model (OGCM) and Simple Ocean Data Assimilation (SODA.2.0.2) reanalysis data. This newly suggested pathway follows the processes in succession as upwelling in the south Java coast, offshore Ekman drift and subduction into the thermocline centered on 20∘S. The upwelling of subsurface ITF along the south Java coast is found to occur from August to October. Upon surfacing, the ITF advects southwestward being trapped in the surface Ekman layer for an approximate period of 260 days and reaches the southeastern tropical Indian Ocean subduction zone centered on 20∘S which is demarcated by the Zero Wind Stress Curl (ZWSC) and subducts there. The particle trajectory revealed that during the subduction within the ZWSC region, the surface eastward flow above 120 m depth carries the particle about 10∘ to the east and westward flow below this depth carries the particle to the western Indian Ocean along the thermocline. These pathways are confirmed by a series of tracer experiments using SODA reanalysis data. The effects of vertical mixing and entrainment on the surfacing of the ITF at south Java coast were identified.


Sign in / Sign up

Export Citation Format

Share Document