scholarly journals Generation of Internal Solitary Waves by Lateral Circulation in a Stratified Estuary

2017 ◽  
Vol 47 (7) ◽  
pp. 1789-1797 ◽  
Author(s):  
Xiaohui Xie ◽  
Ming Li ◽  
Malcolm Scully ◽  
William C. Boicourt

AbstractInternal solitary waves are commonly observed in the coastal ocean where they are known to contribute to mass transport and turbulent mixing. While these waves are often generated by cross-isobath barotropic tidal currents, novel observations are presented suggesting that internal solitary waves result from along-isobath tidal flows over channel-shoal bathymetry. Mooring and ship-based velocity, temperature, and salinity data were collected over a cross-channel section in a stratified estuary. The data show that Ekman forcing on along-channel tidal currents drives lateral circulation, which interacts with the stratified water over the deep channel to generate a supercritical mode-2 internal lee wave. This lee wave propagates onto the shallow shoal and evolves into a group of internal solitary waves of elevation due to nonlinear steepening. These observations highlight the potential importance of three-dimensionality on the conversion of tidal flow to internal waves in the rotating ocean.

2019 ◽  
Vol 49 (7) ◽  
pp. 1687-1697
Author(s):  
Xiaohui Xie ◽  
Ming Li

AbstractRecent mooring observations at a cross-channel section in Chesapeake Bay showed that internal solitary waves regularly appeared during certain phases of a tidal cycle and propagated from the deep channel to the shallow shoal. It was hypothesized that these waves resulted from the nonlinear steepening of internal lee waves generated by lateral currents over channel-shoal topography. In this study numerical modeling is conducted to investigate the interaction between lateral circulation and cross-channel topography and discern the generation mechanism of the internal lee waves. During ebb tides, lateral bottom Ekman forcing drives a counterclockwise (looking into estuary) lateral circulation, with strong currents advecting stratified water over the western flank of the deep channel and producing large isopycnal displacements. When the lateral flow becomes supercritical with respect to mode-2 internal waves, a mode-2 internal lee wave is generated on the flank of the deep channel and subsequently propagates onto the western shoal. When the bottom lateral flow becomes near-critical or supercritical with respect to mode-1 internal waves, the lee wave evolves into an internal hydraulic jump. On the shallow shoal, the lee waves or jumps evolve into internal bores of elevation.


2013 ◽  
Vol 12 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Zhisong Fan ◽  
Xingang Shi ◽  
Antony K. Liu ◽  
Hailong Liu ◽  
Peiliang Li

2020 ◽  
Author(s):  
Haibin Song ◽  
Wenhao Fan ◽  
Shaoqing Sun ◽  
Yongxian Guan ◽  
Kun Zhang ◽  
...  

<p>In this paper, we used the seismic oceanography method to study the structural characteristics of internal solitary waves (ISWs) near the Strait of Gibraltar in the Mediterranean Sea, South China Sea and offshore Central America.</p><p>The ISWs near the Strait of Gibraltar are the first mode depressional type, mostly medium amplitude and large amplitude internal solitary waves. The maximum vertical amplitude is up to 74.5m, and the amplitude increases with depth,the propagation velocity increases with amplitude. It can be determined that the "true" maximum amplitude position is near the pycnocline. After correction, the maximum half-height-width can reach 1721.8m, but there is somewhat different from the theoretical result,which may be related to the development stability of ISWs. As the solitary wave packet continuously moves eastward, the overall wave width becomes larger, and the vertical velocity becomes smaller. In this paper, seismic oceanography is applied to the analysis of ISWs in the Mediterranean Sea, which further proves the feasibility of using seismic oceanography to study the movement of sea water.</p><p>We reprocess some multi-channel seismic (MCS) data which is acquired recently in the Dongsha region of the northeastern South China Sea and we obtain new seismic oceanography data. The research suggest that there are the mode-2 internal solitary wave(ISWs) not just the mode-1 ISWs and a special reflection pattern (hair-like reflection configuration )usually above sand dunes in the seismic images. In new seismic oceanography data, there are some mode-1 ISWs with amplitudes less than 50m and wavelength of 1~5 km and the biggest mode-1 ISWs have the amplitude about 45m. The internal solitary waves packets are not prototypical rank-ordered ISW packets, their soliton amplitudes are smaller than 40. The mode-2 ISWs is well-shaped and its’ amplitude is approximate 30m, the vertical structure height is about 200m.The reflection configuration of water column above sand dunes usually include weak reflection layer-maybe called turbulent bottom boundary layer, and there is hair reflection configuration that must not appear. Whether there will be hair reflection configuration or not may depend on the angle between the seismic line and the sand dunes.</p><p>In the region offshore Central America, there are lots of mode-2 ISWs revealed from seismic oceanography data. We combine seismic data with hydrographic data to study the features of ISWs in these different regions. The preliminary results show the phase velocity in SCS is the largest, that in the Strait of Gibraltar is the second and that offshore Central America is the last. The phase velocity depends on the amplitude of ISW. Usually the mode-1 depressional ISW has the largest phase velocity, while the mode-1 elevation ISW is the second, and the mode-2 ISW is the last. The location of the maximum amplitude from the characteristic function is consistent with the pycnocline as shown from floating frequency curve. The polarity of ISW is consistent with nonlinear parameter of alpha. Seismic data in global continental margins will provide more and more key evidence to increase our understanding of ISW evolution in the ocean.</p>


2020 ◽  
Author(s):  
Wenhao Fan ◽  
Haibin Song ◽  
Yi Gong ◽  
Shaoqing Sun ◽  
Kun Zhang

<p>In the past, most of the internal solitary waves (ISWs) found by seismic oceanography (SO) method were mode-1 ISWs. We discover many mode-2 ISWs in the Pacific coast of Central America by using SO method for the first time. These mode-2 ISWs are convex mode-2 ISWs with the maximum amplitudes of about 10 m, and most of them are ISWs with smaller amplitudes. The pycnocline for the mode-2 ISWs on the shelf (ISW3) is displaced 6.4% of the total seawater depth from the mid-depth of the total seawater. The deviation is large, and it shows a strong asymmetry feature of the peaks and troughs on the seismic profile. This is consistent with the results of previous numerical simulation. Observing the changes in the fine structure of mode-2 ISWs packet through pre-stack migration, it was found that the overall waveform of the three mode-2 ISWs (ISW1, ISW2, and ISW3) on the shelf during the acquisition time period of about 40 seconds is stable. The apparent phase velocity of these mode-2 ISWs calculated by the pre-stack migration section using the Common Offset Gathers is about 0.5 m/s, and their apparent propagation directions are from SW to NE along the seismic line (44 ° N, 0° pointing north). The vertical amplitude distribution and estimated apparent velocities of these mode-2 ISWs are basically consistent with the theoretical values ​​calculated from the KdV equation. By analyzing the apparent velocities of the three mode-2 ISWs (ISW1, ISW3, and ISW5) with relatively small apparent velocity errors, it is found that the apparent velocity of mode-2 ISWs generally increases with the increasing depth of seawater. In addition, the apparent phase velocity of the mode-2 ISWs with a larger maximum amplitude is generally larger. Based on the analysis of hydrological data in the study area, it was found that a strong anticyclone developed on the northwest side of the seismic survey line and a weaker anticyclone developed on the southeast side. These anticyclones will increase the depth of the thermocline in the surrounding seawater. According to previous studies, the deepening of the thermocline (pycnocline) maybe conducive to the generation of mode-2 ISWs.</p>


2020 ◽  
Vol 39 (11) ◽  
pp. 44-51
Author(s):  
Liang Chen ◽  
Xuejun Xiong ◽  
Quanan Zheng ◽  
Yeli Yuan ◽  
Long Yu ◽  
...  

2009 ◽  
Vol 39 (9) ◽  
pp. 2324-2337 ◽  
Author(s):  
Peng Cheng ◽  
Robert E. Wilson ◽  
Robert J. Chant ◽  
David C. Fugate ◽  
Roger D. Flood

Abstract The dynamics of lateral circulation in the Passaic River estuary is examined in this modeling study. The pattern of lateral circulation varies significantly over a tidal cycle as a result of the temporal variation of stratification induced by tidal straining. During highly stratified ebb tides, the lateral circulation exhibits a vertical two-cell structure. Strong stratification suppresses vertical mixing in the deep channel, whereas the shoal above the halocline remains relatively well mixed. As a result, in the upper layer, the lateral asymmetry of vertical mixing produces denser water on the shoal and fresher water over the thalweg. This density gradient drives a circulation with surface currents directed toward the shoal, and the currents at the base of the pycnocline are directed toward the thalweg. In the lower layer, the lateral circulation tends to reduce the tilting of isopycnals and gradually diminishes at the end of the ebb tide. A lateral baroclinic pressure gradient is a dominant driving force for lateral circulation during stratified ebb tides and is generated by differential diffusion that indicates a lateral asymmetry in vertical mixing. Over the thalweg, vertical mixing is strong during the flood and weak during the ebb. Over the shoal, the tidally periodical stratification shows an opposite cycle of that at the thalweg. Lateral straining tends to enhance stratification during flood tides and vertical diffusion maintains the relatively well-mixed water column over the shoal during the stratified ebb tides.


2018 ◽  
Vol 25 (2) ◽  
pp. 441-455 ◽  
Author(s):  
Peiwen Zhang ◽  
Zhenhua Xu ◽  
Qun Li ◽  
Baoshu Yin ◽  
Yijun Hou ◽  
...  

Abstract. The evolution of mode-2 internal solitary waves (ISWs) modulated by background shear currents was investigated numerically. The mode-2 ISW was generated by the “lock-release” method, and the background shear current was initialized after the mode-2 ISW became stable. Five sets of experiments were conducted to assess the sensitivity of the modulation process to the direction, polarity, magnitude, shear layer thickness and offset extent of the background shear current. Three distinctly different shear-induced waves were identified as a forward-propagating long wave, oscillating tail and amplitude-modulated wave packet in the presence of a shear current. The amplitudes of the forward-propagating long wave and the amplitude-modulated wave packet are proportional to the magnitude of the shear but inversely proportional to the thickness of the shear layer, as well as the energy loss of the mode-2 ISW during modulation. The oscillating tail and amplitude-modulated wave packet show symmetric variation when the background shear current is offset upward or downward, while the forward-propagating long wave was insensitive to it. For comparison, one control experiment was configured according to the observations of Shroyer et al. (2010); in the first 30 periods, ∼ 36 % of total energy was lost at an average rate of 9 W m−1 in the presence of the shear current; it would deplete the energy of initial mode-2 ISWs in ∼ 4.5 h, corresponding to a propagation distance of ∼ 5 km, which is consistent with in situ data.


2018 ◽  
Vol 839 ◽  
pp. 387-407 ◽  
Author(s):  
R. Grimshaw ◽  
K. R. Helfrich

Oceanic internal solitary waves are typically generated by barotropic tidal flow over localised topography. Wave generation can be characterised by the Froude number $F=U/c_{0}$, where $U$ is the tidal flow amplitude and $c_{0}$ is the intrinsic linear long wave phase speed, that is the speed in the absence of the tidal current. For steady tidal flow in the resonant regime, $\unicode[STIX]{x1D6E5}_{m}<F-1<\unicode[STIX]{x1D6E5}_{M}$, a theory based on the forced Korteweg–de Vries equation shows that upstream and downstream propagating undular bores are produced. The bandwidth limits $\unicode[STIX]{x1D6E5}_{m,M}$ depend on the height (or depth) of the topographic forcing term, which can be either positive or negative depending on whether the topography is equivalent to a hole or a sill. Here the wave generation process is studied numerically using a forced Korteweg–de Vries equation model with time-dependent Froude number, $F(t)$, representative of realistic tidal flow. The response depends on $\unicode[STIX]{x1D6E5}_{max}=F_{max}-1$, where $F_{max}$ is the maximum of $F(t)$ over half of a tidal cycle. When $\unicode[STIX]{x1D6E5}_{max}<\unicode[STIX]{x1D6E5}_{m}$ the flow is always subcritical and internal solitary waves appear after release of the downstream disturbance. When $\unicode[STIX]{x1D6E5}_{m}<\unicode[STIX]{x1D6E5}_{max}<\unicode[STIX]{x1D6E5}_{M}$ the flow reaches criticality at its peak, producing upstream and downstream undular bores that are released as the tide slackens. When $\unicode[STIX]{x1D6E5}_{max}>\unicode[STIX]{x1D6E5}_{M}$ the tidal flow goes through the resonant regime twice, producing undular bores with each passage. The numerical simulations are for both symmetrical topography, and for asymmetric topography representative of Stellwagen Bank and Knight Inlet.


Sign in / Sign up

Export Citation Format

Share Document