scholarly journals Modeling Influence of Stratification on Lateral Circulation in a Stratified Estuary

2009 ◽  
Vol 39 (9) ◽  
pp. 2324-2337 ◽  
Author(s):  
Peng Cheng ◽  
Robert E. Wilson ◽  
Robert J. Chant ◽  
David C. Fugate ◽  
Roger D. Flood

Abstract The dynamics of lateral circulation in the Passaic River estuary is examined in this modeling study. The pattern of lateral circulation varies significantly over a tidal cycle as a result of the temporal variation of stratification induced by tidal straining. During highly stratified ebb tides, the lateral circulation exhibits a vertical two-cell structure. Strong stratification suppresses vertical mixing in the deep channel, whereas the shoal above the halocline remains relatively well mixed. As a result, in the upper layer, the lateral asymmetry of vertical mixing produces denser water on the shoal and fresher water over the thalweg. This density gradient drives a circulation with surface currents directed toward the shoal, and the currents at the base of the pycnocline are directed toward the thalweg. In the lower layer, the lateral circulation tends to reduce the tilting of isopycnals and gradually diminishes at the end of the ebb tide. A lateral baroclinic pressure gradient is a dominant driving force for lateral circulation during stratified ebb tides and is generated by differential diffusion that indicates a lateral asymmetry in vertical mixing. Over the thalweg, vertical mixing is strong during the flood and weak during the ebb. Over the shoal, the tidally periodical stratification shows an opposite cycle of that at the thalweg. Lateral straining tends to enhance stratification during flood tides and vertical diffusion maintains the relatively well-mixed water column over the shoal during the stratified ebb tides.

2017 ◽  
Vol 47 (7) ◽  
pp. 1789-1797 ◽  
Author(s):  
Xiaohui Xie ◽  
Ming Li ◽  
Malcolm Scully ◽  
William C. Boicourt

AbstractInternal solitary waves are commonly observed in the coastal ocean where they are known to contribute to mass transport and turbulent mixing. While these waves are often generated by cross-isobath barotropic tidal currents, novel observations are presented suggesting that internal solitary waves result from along-isobath tidal flows over channel-shoal bathymetry. Mooring and ship-based velocity, temperature, and salinity data were collected over a cross-channel section in a stratified estuary. The data show that Ekman forcing on along-channel tidal currents drives lateral circulation, which interacts with the stratified water over the deep channel to generate a supercritical mode-2 internal lee wave. This lee wave propagates onto the shallow shoal and evolves into a group of internal solitary waves of elevation due to nonlinear steepening. These observations highlight the potential importance of three-dimensionality on the conversion of tidal flow to internal waves in the rotating ocean.


2012 ◽  
Vol 42 (5) ◽  
pp. 869-883 ◽  
Author(s):  
Audric G. Collignon ◽  
Mark T. Stacey

Abstract In partially stratified shoal–channel estuaries, variations in bathymetry at the shoal–channel interface generate horizontal shears and density gradients, and foam lines characteristic of convergence fronts are frequently observed. This study is based on transect data collected every 30 min across the shoal–channel interface in south San Francisco Bay to analyze the dynamics of the transverse circulation and convergence fronts at this interface throughout a tidal cycle. During the ebb, a lateral density gradient develops as a result of the competition between differential advection of the longitudinal salinity gradient; lateral variations in vertical mixing; and nonlinear advection terms, which are strongest when convergence fronts develop early and late in the ebb. The lateral circulation over the slope is characterized by a large intratidal variability, reversing three times during the ebb. This variability is driven by a balance dominated by inertia and lateral baroclinic pressure gradient during the ebb but also involving Coriolis and advection terms at leading order. The convergence fronts developing at the edge of the shoal during the ebb are greatly affected by the direction of the lateral circulation on the slope and display similar intratidal variability as a result. Observations from moored instruments suggest that these processes are involved in all partially stratified spring ebbs in south San Francisco Bay and are more sensitive to variations in tidal amplitude than density stratification on the slope.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Geórgenes H. Cavalcante ◽  
David A. Feary ◽  
Björn Kjerfve

Tidal influence and local morphology on circulation and salt transport are investigated in the Caeté river estuary, a well-mixed estuary along the north coast of Brazil. Velocity, temperature, and salinity data were collected in three different locations along the estuary’s main channel, over three single, 13 h tidal cycles. The aim of this study was to investigate the relationship between tidal distortion and salinity by using classical methods of comparison of three cross-channel circulation characteristics, as well as computation of salt flux and vertical mixing. Findings indicate a flood-ebb asymmetry in currents, due to the distinct funneling morphology of the estuary, with shallow marginal areas being dominant towards the estuary head, while both stratification and shear dominate near the estuary mouth. The tidal currents enhanced vertical diffusion in the mid- and lower reaches, explaining the prevailing weakly stratified conditions, while the dominant well-mixed conditions in the upper estuary are a result of a combination of stronger flood currents and negligible vertical saline gradient. The predominant downstream salt transport supports the conclusion that there is little accumulation of salt in the Caeté river estuary. In addition, findings indicate that tidal correlation and Stokes drift are important components in the upper estuary, while tidal correlation played an important role in the middle estuary, with fluvial discharge most important in the lower estuary.


2017 ◽  
Vol 47 (2) ◽  
pp. 433-445 ◽  
Author(s):  
Xiaohui Xie ◽  
Ming Li ◽  
William C. Boicourt

AbstractThe 2-month-long mooring data were collected in a straight midsection of Chesapeake Bay to document the lateral circulation driven by along-channel winds. Under upestuary winds, the lateral circulation featured a clockwise (looking into estuary) circulation in the surface layer, with lateral Ekman forcing as the dominant generation mechanism. Under downestuary winds, however, the lateral circulation displayed a structure dependent on the Wedderburn number W: a counterclockwise circulation at small W and two counterrotating vortices at large W. The surface lateral velocity was phase locked to the along-channel wind speed. Analysis of the streamwise vorticity equation showed that the strength and structure of the lateral circulation in this stratified estuary were largely determined by the competition between the tilting of planetary vorticity by along-channel currents and lateral baroclinic forcing due to sloping isopycnals. Under strong, downestuary winds, the lateral baroclinic forcing offset or reversed the tilting of planetary vorticity on the western half of the estuarine channel, resulting in two counterrotating lateral circulation cells. A bottom lateral flow was observed in the deep channel and appeared to be generated by lateral Ekman forcing on the along-channel currents.


2010 ◽  
Vol 14 (8) ◽  
pp. 1465-1476 ◽  
Author(s):  
D. C. Shaha ◽  
Y.-K. Cho ◽  
G.-H. Seo ◽  
C.-S. Kim ◽  
K. T. Jung

Abstract. Spring-neap and spatial variations of gravitational circulation and tidal exchanges in the Sumjin River Estuary (SRE) were investigated using the flushing rate. The flushing rate was calculated between multiple estuarine segments and the adjacent bay to examine the spatial variation of two exchanges. The strength of gravitational circulation and tidal exchanges modulated significantly between spring and neap tides, where stratification alternated between well-mixed and highly-stratified conditions over the spring-neap cycle. Tide-driven dispersive flux of salt dominated over gravitational circulation exchange near the mouth during spring tide due to the larger tidal amplitude that caused well-mixed conditions and rapid exchange. In contrast, the central and inner regimes were found to be partially stratified during spring tide due to the reduction in tidal amplitude where both gravitational circulation and tidal exchanges were important in transporting salt. The combined contributions of two fluxes were also found during neap tide along the SRE due to the significant reduction in vertical mixing that accompanied strong stratification. Gravitational circulation exchange almost entirely dominated in transporting salt at the upstream end during spring and neap tides.


2020 ◽  
Author(s):  
Oliver Gutjahr ◽  
Nils Brüggemann ◽  
Helmuth Haak ◽  
Johann H. Jungclaus ◽  
Dian A. Putrasahan ◽  
...  

Abstract. We compare the effects of four different ocean vertical mixing schemes on the ocean mean state simulated by the Max Planck Institute Earth System Model (MPI-ESM1.2) in the framework of the Community Vertical Mixing (CVMix) library. Besides the PP and KPP scheme, we implemented the TKE scheme and a recently developed prognostic scheme for internal wave energy and its dissipation (IDEMIX) to replace the often assumed constant background diffusivity in the ocean interior. We analyse in particular the effects of IDEMIX on the ocean mean state, when combined with TKE (TKE+IDEMIX). In general, we find little sensitivity of the ocean surface, but considerable effects for the interior ocean. Overall, we cannot classify any scheme as superior, because they modify biases that vary by region or variable, but produce a similar pattern on the global scale. However, using a more realistic and energetically consistent scheme (TKE+IDEMIX) produces a more heterogeneous pattern of vertical diffusion, with lower diffusivity in deep and flat-bottom basins and elevated turbulence over rough topography. In addition, TKE+IDEMIX improves the circulation in the Nordic Seas and Fram Strait, thus reducing the warm bias of the Atlantic water (AW) layer in the Arctic Ocean to a similar extent as has been demonstrated with eddy-resolving ocean models. We conclude that although shortcomings due to model resolution determine the global-scale bias pattern, the choice of the vertical mixing scheme may play an important role for regional biases.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2080 ◽  
Author(s):  
Huang ◽  
Hu ◽  
Li ◽  
Wang ◽  
Xu ◽  
...  

A validated hydrodynamic-biogeochemical model was applied to investigate the effects of physical forcing (i.e., river discharge, winds, and tides) on the summertime dissolved oxygen (DO) dynamics and hypoxia (DO < 3 mg L−1) in the Pearl River estuary (PRE), based on a suite of model sensitivity experiments. Compared with the base model run in 2006 (a wet year), the simulated hypoxic area in the moderate year (with 75% of river discharge of the base run) and the dry year scenario (with 50% of river discharge of the base run) was reduced by ~30% and ~60%, respectively. This is because under the lower river discharge levels, less particulate organic matter was delivered to the estuary that subsequently alleviated the oxygen demand at the water–sediment interface, and in the meantime, the water stratification strength was decreased, which facilitated the vertical diffusion of DO. Regarding the effect of winds, the highly varying and intermittent strong winds had a significant impact on the replenishment of bottom DO by disrupting water stratification and thus inhibiting the development of hypoxia. Sensitivity experiments showed that the hypoxic area and volume were both remarkably increased in the low wind scenario (with a bottom hypoxic zone extending from the Modaomen sub-estuary to the western shoal in Lingdingyang Bay), whereas hypoxia was almost absent in the strong wind scenario. The DO budget indicated that winds altered the bottom DO mostly by affecting the DO flux due to vertical diffusion and horizontal advection, and had a limited influence on the DO consumption processes. Moreover, the DO concentration exhibited remarkable fluctuations over the spring-neap tidal cycles due to the significant differences in vertical diffusion. The results of a tide-sensitivity experiment indicated that without tide forcing, most of the shallow areas (average water depth < 5 m) in the PRE experienced severe and persistent hypoxia. The tides mainly enhanced mixing in the shallow areas, which led to higher vertical diffusion and enhanced replenishment of bottom DO.


2012 ◽  
Vol 51 (9) ◽  
pp. 1618-1632 ◽  
Author(s):  
Mark Gordon ◽  
Ralf M. Staebler ◽  
John Liggio ◽  
Paul Makar ◽  
Shao-Meng Li ◽  
...  

AbstractIn August and September of 2010, measurements of turbulent fluxes and turbulent kinetic energy were made on highways in the Toronto area (Ontario, Canada). In situ turbulence measurements were made with a mobile laboratory while driving on the highway with traffic. Results demonstrate that the turbulent kinetic energy (TKE) spectrum is significantly enhanced on and near the highway by traffic for frequencies above 0.015 Hz. The decay of TKE with distance behind vehicles is well approximated by power-law curves. The strongest increase in TKE is seen while following heavy-duty trucks, primarily for frequencies above 0.7 Hz. From these results, a parameterization of on-road TKE enhancement is developed that is based on vehicle type and traffic-flow rate. TKE with distance downwind of the highway also decays following a power law. The enhancement of roadside TKE is shown to be strongly dependent on traffic flow. The effect of vehicle-induced turbulence on vertical mixing was studied by comparing parameterized TKE enhancement with the typical TKE predictions from the Global Environmental Multiscale weather forecast to predict the potential increase in vertical diffusion that results from highway traffic. It is demonstrated that this increase in TKE by traffic may be locally significant, especially in the early morning.


2020 ◽  
Vol 8 (8) ◽  
pp. 608
Author(s):  
Jasna Arapov ◽  
Mia Bužančić ◽  
Sanda Skejić ◽  
Jelena Mandić ◽  
Ana Bakrač ◽  
...  

The Krka River estuary is a karstic, permanently stratified estuary due to the strong freshwater inflow. It is a special environment in which to study the phytoplankton community, especially because this area is an important aquaculture site. Among other potentially toxic phytoplankton species, the diatom genus Pseudo-nitzschia occurs frequently and is a potential source of domoic acid (DA), causing shellfish toxicity and human intoxication. The main objective was to examine the dynamics of the phytoplankton community and, in particular, the genus Pseudo-nitzschia in the upper part of the Krka estuary, through monthly sampling over two years. The phytoplankton community was analysed using light microscopy and scanning electron microscopy to determine the diversity of Pseudo-nitzschia species and characterise the environmental parameters associated with a high abundance of Pseudo-nitzschia species. Seven Pseudo-nitzschia species were identified in the investigation, with higher frequencies and abundances in the less variable layer, at a 7 m depth. Blooms of Pseudo-nitzschia were noted in the late summer/early autumn, dominated by P. delicatissima/arenysensis. Winter assemblages were characterised by P. pseudodelicatissima/cuspidata, P. calliantha, and P. subfraudulenta, and were associated with domoic acid occurrence in shellfish.


Sign in / Sign up

Export Citation Format

Share Document