scholarly journals Shelf–Open Ocean Exchange Forced by Wind Jets

2018 ◽  
Vol 48 (1) ◽  
pp. 163-174 ◽  
Author(s):  
Michael A. Spall ◽  
Joseph Pedlosky

AbstractThe general problem of exchange from a shallow shelf across sharp topography to the deep ocean forced by narrow, cross-shelf wind jets is studied using quasigeostrophic theory and an idealized primitive equation numerical model. Interest is motivated by katabatic winds that emanate from narrow fjords in southeast Greenland, although similar topographically constrained wind jets are found throughout the world’s oceans. Because there is no net vorticity input by the wind, the circulation is largely confined to the region near the forcing. Circulation over the shelf is limited by bottom friction for weakly stratified flows, but stratification allows for much stronger upper-layer flows that are regulated by weak coupling to the lower layer. Over the sloping topography, the topographic beta effect limits the deep flow, while, for sufficient stratification, the upper-layer flow can cross the topography to connect the shelf to the open ocean. This can be an effective transport mechanism even for short, strong wind events because damping of the upper-layer flow is weak. A variety of transients are generated for an abrupt onset of winds, including short topography Rossby waves, long topographic Rossby waves, and inertial waves. Using parameters representative of southeast Greenland, katabatic wind events will force an offshore transport of O(0.4) Sv (1 Sv ≡ 106 m3 s−1) that, when considered for 2 days, will result in an offshore flux of O(5 × 1010) m3.

1995 ◽  
Vol 7 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Ute Adolphs ◽  
Gerd Wendler

Infrared satellite images of the coastal area off Adélie Land were examined together with two wind data sets, one from the manned French station, Dumont d'Urville, the other one from an Automatic Weather Station (AWS) during the 1986 austral winter. A correlation between the development of open water areas (polynyas) and the appearance of extremely strong offshore winds can be drawn. The wind direction tended to be more perpendicular to the coastline during these extreme ‘events’, suggesting a katabatic origin of the increase in wind strength. In the study area the influence of the katabatic wind on the sea ice extends 20–100 km offshore. Sea ice motion further off the coast seems to be more dominated by synoptic scale weather systems. Broader scale atmospheric influences may create large polynya structures which influence the development of coastal winds, as the temperature contrast between open water and the cold continent generates its own circulation. Strong wind events can have a weakening effect on the coastal sea ice which can lead to a much more sensitive reaction of the sea ice in response to following anomalous wind events.


2021 ◽  
Author(s):  
Xiaoqiao Wang ◽  
Zhaoru Zhang ◽  
Xuezhu Wang ◽  
Timo Vihma ◽  
Meng Zhou ◽  
...  

AbstractStrong offshore wind events (SOWEs) occur frequently near the Antarctic coast during austral winter. These wind events are typically associated with passage of synoptic- or meso-scale cyclones, which interact with the katabatic wind field and affect sea ice and oceanic processes in coastal polynyas. Based on numerical simulations from the coupled Finite Element Sea-ice Ocean Model (FESOM) driven by the CORE-II forcing, two coastal polynyas along the East Antarctica coast––the Prydz Bay Polynya and the Shackleton Polynya are selected to examine the response of sea ice and oceanic properties to SOWEs. In these polynyas, the southern or western flanks of cyclones play a crucial role in increasing the offshore winds depending on the local topography. Case studies for both polynyas show that during SOWEs, when the wind speed is 2–3 times higher than normal values, the offshore component of sea ice velocity can increase by 3–4 times. Sea ice concentration can decrease by 20–40%, and sea ice production can increase up to two to four folds. SOWEs increase surface salinity variability and mixed layer depth, and such effects may persist for 5–10 days. Formation of high salinity shelf water (HSSW) is detected in the coastal regions from surface to 800 m after 10–15 days of the SOWEs, while the HSSW features in deep layers exhibit weak response on the synoptic time scale. HSSW formation averaged over winter is notably greater in years with longer duration of SOWEs.


2019 ◽  
Vol 49 (6) ◽  
pp. 1485-1502 ◽  
Author(s):  
Øyvind Lundesgaard ◽  
Brian Powell ◽  
Mark Merrifield ◽  
Lisa Hahn-Woernle ◽  
Peter Winsor

AbstractFjords along the western Antarctic Peninsula are episodically exposed to strong winds flowing down marine-terminating glaciers and out over the ocean. These wind events could potentially be an important mechanism for the ventilation of fjord waters. A strong wind event was observed in Andvord Bay in December 2015, and was associated with significant increases in upper-ocean salinity. We examine the dynamical impacts of such wind events during the ice-free summer season using a numerical model. Passive tracers are used to identify water mass pathways and quantify exchange with the outer ocean. Upwelling and outflow in the model fjord generate an average salinity increase of 0.3 in the upper ocean during the event, similar to observations from Andvord Bay. Down-fjord wind events are a highly efficient mechanism for flushing out the upper fjord waters, but have little net impact on deep waters in the inner fjord. As such, summer episodic wind events likely have a large effect on fjord phytoplankton dynamics and export of glacially modified upper waters, but are an unlikely mechanism for the replenishment of deep basin waters and oceanic heat transport toward inner-fjord glaciers.


2005 ◽  
Vol 133 (12) ◽  
pp. 3548-3561 ◽  
Author(s):  
Neil Adams

Abstract Casey Station in East Antarctica is not often subject to strong southerly flow off the Antarctic continent but when such events occur, operations at the station are often adversely impacted. Not only are the dynamics of such events poorly understood, but the forecasting of such occurrences is difficult. The following study uses model output from a 12-month experiment using the Antarctic Limited-Area Prediction System (ALAPS) to advance the understanding of the dynamics of such events and postulates that what are often described as katabatic wind events are more likely to be synoptic in scale, with mid- and upper-level tropospheric dynamics forcing the surface layer flow. Strong surface layer flows that have a katabatic signature commonly develop on the steep Antarctic escarpment but rarely extend out over the coast in the Casey area, most probably as a result of cold air damming. However, the development of a strong south-southwesterly jet over Casey provides a mechanism whereby the katabatic can move out off the coast.


2020 ◽  
Vol 32 (3) ◽  
pp. 223-237
Author(s):  
Jade P. Lawrence ◽  
Peter T. Doran ◽  
Luke A. Winslow ◽  
John C. Priscu

AbstractBrine beneath Taylor Glacier has been proposed to enter the proglacial west lobe of Lake Bonney (WLB) as well as from Blood Falls, a surface discharge point at the Taylor Glacier terminus. The brine strongly influences the geochemistry of the water column of WLB. Year-round measurements from this study are the first to definitively identify brine intrusions from a subglacial entry point into WLB. Furthermore, we excluded input from Blood Falls by focusing on winter dynamics when the absence of an open water moat prevents surface brine entry. Due to the extremely high salinities below the chemocline in WLB, density stratification is dominated by salinity, and temperature can be used as a passive tracer. Cold brine intrusions enter WLB at the glacier face and intrude into the water column at the depth of neutral buoyancy, where they can be identified by anomalously cold temperatures at that depth. High-resolution measurements also reveal under-ice internal waves associated with katabatic wind events, a novel finding that challenges long-held assumptions about the stability of the WLB water column.


2021 ◽  
Vol 18 (6) ◽  
pp. 1405-1423
Author(s):  
Dariusz Strzyżowski ◽  
Elżbieta Gorczyca ◽  
Kazimierz Krzemień ◽  
Mirosław Żelazny

AbstractStrong wind events frequently result in creating large areas of windthrow, which causes abrupt environmental changes. Bare soil surfaces within pits and root plates potentially expose soil to erosion. Absence of forest may alter the dynamics of water circulation. In this study we attempt to answer the question of whether extensive windthrows influence the magnitude of geomorphic processes in 6 small second- to third-order catchments with area ranging from 0.09 km2 to 0.8 km2. Three of the catchments were significantly affected by a windthrow which occurred in December 2013 in the Polish part of the Tatra Mountains, and the other three catchments were mostly forested and served as control catchments. We mapped the pits created by the windthrow and the linear scars created by salvage logging operations in search of any signs of erosion within them. We also mapped all post-windthrow landslides created in the windthrow-affected catchments. The impact of the windthrow on the fluvial system was investigated by measuring a set of channel characteristics and determining bedload transport intensity using painted tracers in all the windthrow-affected and control catchments. Both pits and linear scars created by harvesting tend to become overgrown by vegetation in the first several years after the windthrow. The only signs of erosion were observed in 10% of the pits located on convergent slopes. During the period from the windthrow event in 2013 until 2019, 5 very small (total area <100 m2) shallow landslides were created. The mean distance of bedload transport was similar (t-test, p=0.05) in most of the windthrow-affected and control catchments. The mapping of channels revealed many cases of root plates fallen into a channel and pits created near a channel. A significant amount of woody debris delivered into the channels influenced the activity of fluvial processes by creating alternating zones of erosion and accumulation.


2020 ◽  
Vol 20 (5) ◽  
pp. 1513-1531 ◽  
Author(s):  
Oriol Rodríguez ◽  
Joan Bech ◽  
Juan de Dios Soriano ◽  
Delia Gutiérrez ◽  
Salvador Castán

Abstract. Post-event damage assessments are of paramount importance to document the effects of high-impact weather-related events such as floods or strong wind events. Moreover, evaluating the damage and characterizing its extent and intensity can be essential for further analysis such as completing a diagnostic meteorological case study. This paper presents a methodology to perform field surveys of damage caused by strong winds of convective origin (i.e. tornado, downburst and straight-line winds). It is based on previous studies and also on 136 field studies performed by the authors in Spain between 2004 and 2018. The methodology includes the collection of pictures and records of damage to human-made structures and on vegetation during the in situ visit to the affected area, as well as of available automatic weather station data, witness reports and images of the phenomenon, such as funnel cloud pictures, taken by casual observers. To synthesize the gathered data, three final deliverables are proposed: (i) a standardized text report of the analysed event, (ii) a table consisting of detailed geolocated information about each damage point and other relevant data and (iii) a map or a KML (Keyhole Markup Language) file containing the previous information ready for graphical display and further analysis. This methodology has been applied by the authors in the past, sometimes only a few hours after the event occurrence and, on many occasions, when the type of convective phenomenon was uncertain. In those uncertain cases, the information resulting from this methodology contributed effectively to discern the phenomenon type thanks to the damage pattern analysis, particularly if no witness reports were available. The application of methodologies such as the one presented here is necessary in order to build homogeneous and robust databases of severe weather cases and high-impact weather events.


Weather ◽  
2012 ◽  
Vol 67 (10) ◽  
pp. 268-273 ◽  
Author(s):  
Alexander Fox ◽  
Rebekah Sherwin ◽  
Fraser Ralston

2019 ◽  
Vol 13 (12) ◽  
pp. 3405-3412 ◽  
Author(s):  
Charles Amory ◽  
Christoph Kittel

Abstract. Sublimation of snow particles during transport has been recognized as an important ablation process on the Antarctic ice sheet. The resulting increase in moisture content and cooling of the ambient air are thermodynamic negative feedbacks that both contribute to increase the relative humidity of the air, inhibiting further sublimation when saturation is reached. This self-limiting effect and the associated development of saturated near-surface air layers in drifting snow conditions have mainly been described through modelling studies and a few field observations. A set of meteorological data, including drifting snow mass fluxes and vertical profiles of relative humidity, collected at site D17 in coastal Adélie Land (East Antarctica) during 2013 is used to study the relationship between saturation of the near-surface atmosphere and the occurrence of drifting snow in a katabatic wind region that is among the most prone to snow transport by wind. Atmospheric moistening by the sublimation of the windborne snow particles generally results in a strong increase in relative humidity with the magnitude of drifting snow and a decrease in its vertical gradient, suggesting that windborne-snow sublimation can be an important contributor to the local near-surface moisture budget. Despite a high incidence of drifting snow at the measurement location (60.1 % of the time), saturation, when attained, is however most often limited to a thin air layer below 1 m above ground. The development of a near-surface saturated air layer up to the highest measurement level of 5.5 m is observed in only 8.2 % of the drifting snow occurrences or 6.3 % of the time and mainly occurs in strong wind speed and drift conditions. This relatively rare occurrence of ambient saturation is explained by the likely existence of moisture-removal mechanisms inherent to the katabatic and turbulent nature of the boundary-layer flow that weaken the negative feedback of windborne-snow sublimation. Such mechanisms, potentially quite active in katabatic-generated windborne-snow layers all over Antarctica, may be very important in understanding the surface mass and atmospheric moisture budgets of the ice sheet by enhancing windborne-snow sublimation.


2016 ◽  
Vol 10 (4) ◽  
pp. 1495-1511 ◽  
Author(s):  
Ghislain Picard ◽  
Laurent Arnaud ◽  
Jean-Michel Panel ◽  
Samuel Morin

Abstract. Although both the temporal and spatial variations of the snow depth are usually of interest for numerous applications, available measurement techniques are either space-oriented (e.g. terrestrial laser scans) or time-oriented (e.g. ultrasonic ranging probe). Because of snow heterogeneity, measuring depth in a single point is insufficient to provide accurate and representative estimates. We present a cost-effective automatic instrument to acquire spatio-temporal variations of snow depth. The device comprises a laser meter mounted on a 2-axis stage and can scan  ≈  200 000 points over an area of 100–200 m2 in 4 h. Two instruments, installed in Antarctica (Dome C) and the French Alps (Col de Porte), have been operating continuously and unattended over 2015 with a success rate of 65 and 90 % respectively. The precision of single point measurements and long-term stability were evaluated to be about 1 cm and the accuracy to be 5 cm or better. The spatial variability in the scanned area reached 7–10 cm (root mean square) at both sites, which means that the number of measurements is sufficient to average out the spatial variability and yield precise mean snow depth. With such high precision, it was possible for the first time at Dome C to (1) observe a 3-month period of regular and slow increase of snow depth without apparent link to snowfalls and (2) highlight that most of the annual accumulation stems from a single event although several snowfall and strong wind events were predicted by the ERA-Interim reanalysis. Finally the paper discusses the benefit of laser scanning compared to multiplying single-point sensors in the context of monitoring snow depth.


Sign in / Sign up

Export Citation Format

Share Document