scholarly journals Response of an Antarctic Peninsula Fjord to Summer Katabatic Wind Events

2019 ◽  
Vol 49 (6) ◽  
pp. 1485-1502 ◽  
Author(s):  
Øyvind Lundesgaard ◽  
Brian Powell ◽  
Mark Merrifield ◽  
Lisa Hahn-Woernle ◽  
Peter Winsor

AbstractFjords along the western Antarctic Peninsula are episodically exposed to strong winds flowing down marine-terminating glaciers and out over the ocean. These wind events could potentially be an important mechanism for the ventilation of fjord waters. A strong wind event was observed in Andvord Bay in December 2015, and was associated with significant increases in upper-ocean salinity. We examine the dynamical impacts of such wind events during the ice-free summer season using a numerical model. Passive tracers are used to identify water mass pathways and quantify exchange with the outer ocean. Upwelling and outflow in the model fjord generate an average salinity increase of 0.3 in the upper ocean during the event, similar to observations from Andvord Bay. Down-fjord wind events are a highly efficient mechanism for flushing out the upper fjord waters, but have little net impact on deep waters in the inner fjord. As such, summer episodic wind events likely have a large effect on fjord phytoplankton dynamics and export of glacially modified upper waters, but are an unlikely mechanism for the replenishment of deep basin waters and oceanic heat transport toward inner-fjord glaciers.

2020 ◽  
Vol 20 (5) ◽  
pp. 1513-1531 ◽  
Author(s):  
Oriol Rodríguez ◽  
Joan Bech ◽  
Juan de Dios Soriano ◽  
Delia Gutiérrez ◽  
Salvador Castán

Abstract. Post-event damage assessments are of paramount importance to document the effects of high-impact weather-related events such as floods or strong wind events. Moreover, evaluating the damage and characterizing its extent and intensity can be essential for further analysis such as completing a diagnostic meteorological case study. This paper presents a methodology to perform field surveys of damage caused by strong winds of convective origin (i.e. tornado, downburst and straight-line winds). It is based on previous studies and also on 136 field studies performed by the authors in Spain between 2004 and 2018. The methodology includes the collection of pictures and records of damage to human-made structures and on vegetation during the in situ visit to the affected area, as well as of available automatic weather station data, witness reports and images of the phenomenon, such as funnel cloud pictures, taken by casual observers. To synthesize the gathered data, three final deliverables are proposed: (i) a standardized text report of the analysed event, (ii) a table consisting of detailed geolocated information about each damage point and other relevant data and (iii) a map or a KML (Keyhole Markup Language) file containing the previous information ready for graphical display and further analysis. This methodology has been applied by the authors in the past, sometimes only a few hours after the event occurrence and, on many occasions, when the type of convective phenomenon was uncertain. In those uncertain cases, the information resulting from this methodology contributed effectively to discern the phenomenon type thanks to the damage pattern analysis, particularly if no witness reports were available. The application of methodologies such as the one presented here is necessary in order to build homogeneous and robust databases of severe weather cases and high-impact weather events.


2013 ◽  
Vol 8 (6) ◽  
pp. 1096-1102 ◽  
Author(s):  
Shuyang Cao ◽  
◽  
Jin Wang ◽  

Strong wind events, such as typhoons and tornados, have caused severe damage to buildings and other structures as well as agricultural and forestry products in China. This paper analyzes statistical data on typhoons and tornados in China, and it reports case studies on strong wind damage. Lessons from past damage from strong winds, as well as engineering measures against potential wind damage to low-cost houses, are presented for the purpose of wind-related disaster risk reduction.


1995 ◽  
Vol 7 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Ute Adolphs ◽  
Gerd Wendler

Infrared satellite images of the coastal area off Adélie Land were examined together with two wind data sets, one from the manned French station, Dumont d'Urville, the other one from an Automatic Weather Station (AWS) during the 1986 austral winter. A correlation between the development of open water areas (polynyas) and the appearance of extremely strong offshore winds can be drawn. The wind direction tended to be more perpendicular to the coastline during these extreme ‘events’, suggesting a katabatic origin of the increase in wind strength. In the study area the influence of the katabatic wind on the sea ice extends 20–100 km offshore. Sea ice motion further off the coast seems to be more dominated by synoptic scale weather systems. Broader scale atmospheric influences may create large polynya structures which influence the development of coastal winds, as the temperature contrast between open water and the cold continent generates its own circulation. Strong wind events can have a weakening effect on the coastal sea ice which can lead to a much more sensitive reaction of the sea ice in response to following anomalous wind events.


2016 ◽  
Author(s):  
Ethan R. Dale ◽  
Adrian J. McDonald ◽  
Jack H.J. Coggins ◽  
Wolfgang Rack

Abstract. Despite warming trends in global temperatures, sea ice extent in the Southern Hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce a vast amount of the sea ice in the region. We investigate the impacts of strong wind events on the Ross Sea Polynyas and its sea ice concentration and possible consequences on sea ice production. We utilise Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperatures. We compared these with surface winds and temperatures from automatic weather stations (AWS) of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the austral winter period defined as 1st April to 1st November in this study. Daily data were used to classified into characteristic regimes based on the percentiles of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea Polynya (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analysing sea ice motion vectors derived from SSM/I and SSMIS brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wind event. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to recreate these correlations using co-located ERA-Interim wind speeds. However when only days of a certain percentile based wind speed classification were used, the cross correlation functions produced by ERA-Interim wind speeds differed significantly from those produced using AWS wind speeds. The rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. This increase occurs on a more gradual time scale than the average persistence of a strong wind event and the resulting sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes. In the vicinity of Ross Island, ERA-Interim underestimates wind speeds by a factor of 1.7, which results in a significant misrepresentation of the impact of winds on polynya processes.


2008 ◽  
Vol 136 (9) ◽  
pp. 3536-3552 ◽  
Author(s):  
Shiyuan Zhong ◽  
Ju Li ◽  
C. David Whiteman ◽  
Xindi Bian ◽  
Wenqing Yao

Abstract The climatology of high wind events in the Owens Valley, California, a deep valley located just east of the southern Sierra Nevada, is described using data from six automated weather stations distributed along the valley axis in combination with the North American Regional Reanalysis dataset. Potential mechanisms for the development of strong winds in the valley are examined. Contrary to the common belief that strong winds in the Owens Valley are westerly downslope windstorms that develop on the eastern slope of the Sierra Nevada, strong westerly winds are rare in the valley. Instead, strong winds are highly bidirectional, blowing either up (northward) or down (southward) the valley axis. High wind events are most frequent in spring and early fall and they occur more often during daytime than during nighttime, with a peak frequency in the afternoon. Unlike thermally driven valley winds that blow up valley during daytime and down valley during nighttime, strong winds may blow in either direction regardless of the time of the day. The southerly up-valley winds appear most often in the afternoon, a time when there is a weak minimum of northerly down-valley winds, indicating that strong wind events are modulated by local along-valley thermal forcing. Several mechanisms, including downward momentum transfer, forced channeling, and pressure-driven channeling all play a role in the development of southerly high wind events. These events are typically accompanied by strong south-southwesterly synoptic winds ahead of an upper-level trough off the California coast. The northerly high wind events, which typically occur when winds aloft are from the northwest ahead of an approaching upper-level ridge, are predominantly caused by the passage of a cold front when fast-moving cold air behind the surface front undercuts and displaces the warmer air in the valley. Forced channeling by the sidewalls of the relatively narrow valley aligns the wind direction with the valley axis and enhances the wind speeds.


1992 ◽  
Vol 338 (1286) ◽  
pp. 335-364 ◽  

The response of contemporary trees to strong winds (gale force and greater) is repeatable and well defined, as shown by field studies in south east Britain after the October 1987 and January 1990 events, combined with awide-ranging literature survey. It involves the general processes of windprune, windsnap, windtilt and windthrow. Windprune depends on a range of physical and physiological mechanisms and leads to the loss of axial symmetry by a tree, especially where open-grown at an exposed site. Windsnap, windtilt and windthrow see the fall of a tree, as the result of either the breaking of the trunk or partial to full uprooting. Damage of this sort in a forest or woodland ranges from single trees, to scattered groups (swathes), to general devastation. In the main, perfectly healthy trees in youth or early maturity are affected by windsnap, windtilt and windthrow during strong wind events. Their fall-direction is readily established using the position of the rootball or snapped end of the trunk, the alignment of a broken trunk and stump, the taper of the trunk, the position on the trunk of relatively crowded branches (tree crown), and the position of the typically upward acute angle between branch and trunk. Contemporary trees overthrown by wind fall in a direction close to the wind. The variance of fall-directions in a sample due to a single wind event is observed to increase with the size of the woodland area from which the sample is drawn, but appears to become constant for sample areas in excess of 10 2 - 10 3 ha. Because this constant variance is relatively small, the mean fall-direction becomes, in contemporary woodlands and forests, a trustworthy indicator of the general direction of the strong wind which felled the trees. Rooted peats of mid Flandrian age ( ca . 6000-2500 conventional radiocarbon years) which include prostrate trees are widely present among the post-glacial estuarine silts exposed along the shores of the Severn Estuary and the inner Bristol Channel. The trees when overthrown appear in the main to have been perfectly healthy and in youth to early maturity. Oak and alder are the predominant species, and their fall-directions, as judged from the criteria listed from contemporary forests and woodlands, and measured at 18 horizons distributed over 14 sites, are highly coherent both locally and over the area as a whole. Using a model in which the variance of fall-directions observed for a single event is combined with a probability density for event mean directions, it appears that the trees fossilized in the peats were felled by strong winds which blew chiefly toward a range of directions from N.N.W . clockwise to S.S.E. A westerly zonal air-flow is indicated but, compared to the contemns than now, with a greater emphasis on both southerly and westerly to northwesterly blows.


2018 ◽  
Vol 48 (1) ◽  
pp. 163-174 ◽  
Author(s):  
Michael A. Spall ◽  
Joseph Pedlosky

AbstractThe general problem of exchange from a shallow shelf across sharp topography to the deep ocean forced by narrow, cross-shelf wind jets is studied using quasigeostrophic theory and an idealized primitive equation numerical model. Interest is motivated by katabatic winds that emanate from narrow fjords in southeast Greenland, although similar topographically constrained wind jets are found throughout the world’s oceans. Because there is no net vorticity input by the wind, the circulation is largely confined to the region near the forcing. Circulation over the shelf is limited by bottom friction for weakly stratified flows, but stratification allows for much stronger upper-layer flows that are regulated by weak coupling to the lower layer. Over the sloping topography, the topographic beta effect limits the deep flow, while, for sufficient stratification, the upper-layer flow can cross the topography to connect the shelf to the open ocean. This can be an effective transport mechanism even for short, strong wind events because damping of the upper-layer flow is weak. A variety of transients are generated for an abrupt onset of winds, including short topography Rossby waves, long topographic Rossby waves, and inertial waves. Using parameters representative of southeast Greenland, katabatic wind events will force an offshore transport of O(0.4) Sv (1 Sv ≡ 106 m3 s−1) that, when considered for 2 days, will result in an offshore flux of O(5 × 1010) m3.


2021 ◽  
Author(s):  
Xiaoqiao Wang ◽  
Zhaoru Zhang ◽  
Xuezhu Wang ◽  
Timo Vihma ◽  
Meng Zhou ◽  
...  

AbstractStrong offshore wind events (SOWEs) occur frequently near the Antarctic coast during austral winter. These wind events are typically associated with passage of synoptic- or meso-scale cyclones, which interact with the katabatic wind field and affect sea ice and oceanic processes in coastal polynyas. Based on numerical simulations from the coupled Finite Element Sea-ice Ocean Model (FESOM) driven by the CORE-II forcing, two coastal polynyas along the East Antarctica coast––the Prydz Bay Polynya and the Shackleton Polynya are selected to examine the response of sea ice and oceanic properties to SOWEs. In these polynyas, the southern or western flanks of cyclones play a crucial role in increasing the offshore winds depending on the local topography. Case studies for both polynyas show that during SOWEs, when the wind speed is 2–3 times higher than normal values, the offshore component of sea ice velocity can increase by 3–4 times. Sea ice concentration can decrease by 20–40%, and sea ice production can increase up to two to four folds. SOWEs increase surface salinity variability and mixed layer depth, and such effects may persist for 5–10 days. Formation of high salinity shelf water (HSSW) is detected in the coastal regions from surface to 800 m after 10–15 days of the SOWEs, while the HSSW features in deep layers exhibit weak response on the synoptic time scale. HSSW formation averaged over winter is notably greater in years with longer duration of SOWEs.


2017 ◽  
Vol 11 (1) ◽  
pp. 267-280 ◽  
Author(s):  
Ethan R. Dale ◽  
Adrian J. McDonald ◽  
Jack H. J. Coggins ◽  
Wolfgang Rack

Abstract. We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice recovery occurs through thermodynamic rather than dynamic processes.


2011 ◽  
Vol 11 (1) ◽  
pp. 145-155 ◽  
Author(s):  
J. C. Peña ◽  
M. Aran ◽  
J. Cunillera ◽  
J. Amaro

Abstract. The benefit of having a daily synoptic weather type catalogue and even more, a detailed catalogue for high impact weather events is well recognised by both climatologist and meteorologist communities. In this way the Meteorological Service of Catalonia (SMC) has produced some accurate classifications for extreme events, such as hailstorms or strong winds (SW). Within the framework of the MEDEX project, the SMC has been collaborating to increase the level of awareness about these events. Following this line of work, the aim of this study is to characterise the SW events in Catalonia. According to the guidelines of the MEDEX project we worked with its SW event database for the period June 1995 to May 2004. We also used the period 2005–2009 to test the methodology. The methodology is based on principal component, cluster and discriminant analyses and applied to four variables: SLP, temperature at 850 hPa and geopotential at 500 hPa on a synoptic-scale and local gust wind. We worked with ERA-Interim reanalysis and applied discriminant analysis to test the quality of the methodology and to classify the events of the validation period. We found seven patterns for the SW events. The strongest event corresponds to NW-Flow with the Azores Anticyclone and the passing of a low pressure through the Pyrenees. This methodology has distinguished the summer events in an independent cluster. The results obtained encourage us to follow this line of work.


Sign in / Sign up

Export Citation Format

Share Document