scholarly journals An Annual Cycle of Submesoscale Vertical Flow and Restratification in the Upper Ocean

2019 ◽  
Vol 49 (6) ◽  
pp. 1439-1461 ◽  
Author(s):  
Xiaolong Yu ◽  
Alberto C. Naveira Garabato ◽  
Adrian P. Martin ◽  
Christian E. Buckingham ◽  
Liam Brannigan ◽  
...  

AbstractNumerical simulations suggest that submesoscale turbulence may transform lateral buoyancy gradients into vertical stratification and thus restratify the upper ocean via vertical flow. However, the observational evidence for this restratifying process has been lacking due to the difficulty in measuring such ephemeral phenomena, particularly over periods of months to years. This study presents an annual cycle of the vertical velocity and associated restratification estimated from two nested clusters of meso- and submesoscale-resolving moorings, deployed in a typical midocean area of the northeast Atlantic. Vertical velocities inferred using the nondiffusive density equation are substantially stronger at submesoscales (horizontal scales of 1–10 km) than at mesoscales (horizontal scales of 10–100 km), with respective root-mean-square values of 38.0 ± 6.9 and 22.5 ± 3.3 m day−1. The largest submesoscale vertical velocities and rates of restratification occur in events of a few days’ duration in winter and spring, and extend down to at least 200 m below the mixed layer base. These events commonly coincide with the enhancement of submesoscale lateral buoyancy gradients, which is itself associated with persistent mesoscale frontogenesis. This suggests that mesoscale frontogenesis is a regular precursor of the submesoscale turbulence that restratifies the upper ocean. The upper-ocean restratification induced by submesoscale motions integrated over the annual cycle is comparable in magnitude to the net destratification driven by local atmospheric cooling, indicating that submesoscale flows play a significant role in determining the climatological upper-ocean stratification in the study area.

1976 ◽  
Vol 33 (10) ◽  
pp. 2318-2322 ◽  
Author(s):  
M. Donelan

The idea is advanced that the dominant wave frequency in a locally wind-generated sea may be accurately estimated from the ratio of root-mean-square surface vertical velocity to root-mean-square surface deviation. Field and laboratory data are used to establish the relationship between this ratio and the frequency of the peak of the spectrum as a function of inverse wave age. Wave age and the nondimensional fetch parameter are shown to be uniquely related in the fetch-limited case. Finally a procedure is given for estimating the appropriate one-dimensional spectrum from automatic field measurements of average wind speed, root-mean-square surface deviation, and root-mean-square surface vertical velocity.


Author(s):  
Peter Brearley ◽  
Umair Ahmed ◽  
Nilanjan Chakraborty

AbstractScalar forcing in the context of turbulent stratified flame simulations aims to maintain the fuel-air inhomogeneity in the unburned gas. With scalar forcing, stratified flame simulations have the potential to reach a statistically stationary state with a prescribed mixture fraction distribution and root-mean-square value in the unburned gas, irrespective of the turbulence intensity. The applicability of scalar forcing for Direct Numerical Simulations of stratified mixture combustion is assessed by considering a recently developed scalar forcing scheme, known as the reaction analogy method, applied to both passive scalar mixing and the imperfectly mixed unburned reactants of statistically planar stratified flames under low Mach number conditions. The newly developed method enables statistically symmetric scalar distributions between bell-shaped and bimodal to be maintained without any significant departure from the specified bounds of the scalar. Moreover, the performance of the newly proposed scalar forcing methodology has been assessed for a range of different velocity forcing schemes (Lundgren forcing and modified bandwidth forcing) and also without any velocity forcing. It has been found that the scalar forcing scheme has no adverse impact on flame-turbulence interaction and it only maintains the prescribed root-mean-square value of the scalar fluctuation, and its distribution. The scalar integral length scale evolution is shown to be unaffected by the scalar forcing scheme studied in this paper. Thus, the scalar forcing scheme has a high potential to provide a valuable computational tool to enable analysis of the effects of unburned mixture stratification on turbulent flame dynamics.


2016 ◽  
Vol 26 (1) ◽  
pp. 58
Author(s):  
Qiurong XIE ◽  
Zheng JIANG ◽  
Qinglu LUO ◽  
Jie LIANG ◽  
Xiaoling WANG ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 1630
Author(s):  
Yaohui Zhu ◽  
Guijun Yang ◽  
Hao Yang ◽  
Fa Zhao ◽  
Shaoyu Han ◽  
...  

With the increase in the frequency of extreme weather events in recent years, apple growing areas in the Loess Plateau frequently encounter frost during flowering. Accurately assessing the frost loss in orchards during the flowering period is of great significance for optimizing disaster prevention measures, market apple price regulation, agricultural insurance, and government subsidy programs. The previous research on orchard frost disasters is mainly focused on early risk warning. Therefore, to effectively quantify orchard frost loss, this paper proposes a frost loss assessment model constructed using meteorological and remote sensing information and applies this model to the regional-scale assessment of orchard fruit loss after frost. As an example, this article examines a frost event that occurred during the apple flowering period in Luochuan County, Northwestern China, on 17 April 2020. A multivariable linear regression (MLR) model was constructed based on the orchard planting years, the number of flowering days, and the chill accumulation before frost, as well as the minimum temperature and daily temperature difference on the day of frost. Then, the model simulation accuracy was verified using the leave-one-out cross-validation (LOOCV) method, and the coefficient of determination (R2), the root mean square error (RMSE), and the normalized root mean square error (NRMSE) were 0.69, 18.76%, and 18.76%, respectively. Additionally, the extended Fourier amplitude sensitivity test (EFAST) method was used for the sensitivity analysis of the model parameters. The results show that the simulated apple orchard fruit number reduction ratio is highly sensitive to the minimum temperature on the day of frost, and the chill accumulation and planting years before the frost, with sensitivity values of ≥0.74, ≥0.25, and ≥0.15, respectively. This research can not only assist governments in optimizing traditional orchard frost prevention measures and market price regulation but can also provide a reference for agricultural insurance companies to formulate plans for compensation after frost.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 885
Author(s):  
Sergio Ghidini ◽  
Luca Maria Chiesa ◽  
Sara Panseri ◽  
Maria Olga Varrà ◽  
Adriana Ianieri ◽  
...  

The present study was designed to investigate whether near infrared (NIR) spectroscopy with minimal sample processing could be a suitable technique to rapidly measure histamine levels in raw and processed tuna fish. Calibration models based on orthogonal partial least square regression (OPLSR) were built to predict histamine in the range 10–1000 mg kg−1 using the 1000–2500 nm NIR spectra of artificially-contaminated fish. The two models were then validated using a new set of naturally contaminated samples in which histamine content was determined by conventional high-performance liquid chromatography (HPLC) analysis. As for calibration results, coefficient of determination (r2) > 0.98, root mean square of estimation (RMSEE) ≤ 5 mg kg−1 and root mean square of cross-validation (RMSECV) ≤ 6 mg kg−1 were achieved. Both models were optimal also in the validation stage, showing r2 values > 0.97, root mean square errors of prediction (RMSEP) ≤ 10 mg kg−1 and relative range error (RER) ≥ 25, with better results showed by the model for processed fish. The promising results achieved suggest NIR spectroscopy as an implemental analytical solution in fish industries and markets to effectively determine histamine amounts.


Nature ◽  
2021 ◽  
Vol 591 (7851) ◽  
pp. 592-598
Author(s):  
Jean-Baptiste Sallée ◽  
Violaine Pellichero ◽  
Camille Akhoudas ◽  
Etienne Pauthenet ◽  
Lucie Vignes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document