Evolution of the Velocity Structure in the Diurnal Warm Layer

2020 ◽  
Vol 50 (3) ◽  
pp. 615-631 ◽  
Author(s):  
Kenneth G. Hughes ◽  
James N. Moum ◽  
Emily L. Shroyer

AbstractThe daily formation of near-surface ocean stratification caused by penetrating solar radiation modifies heat fluxes through the air–sea interface, turbulence dissipation in the mixed layer, and the vertical profile of lateral transport. The transport is altered because momentum from wind is trapped in a thin near-surface layer, the diurnal warm layer. We investigate the dynamics of this layer, with particular attention to the vertical shear of horizontal velocity. We first develop a quantitative link between the near-surface shear components that relates the crosswind component to the inertial turning of the along-wind component. Three days of high-resolution velocity observations confirm this relation. Clear colocation of shear and stratification with Richardson numbers near 0.25 indicate marginal instability. Idealized numerical modeling is then invoked to extrapolate below the observed wind speeds. This modeling, together with a simple energetic scaling analysis, provides a rule of thumb that the diurnal shear evolves differently above and below a 2 m s−1 wind speed, with limited sensitivity of this threshold to latitude and mean net surface heat flux. Only above this wind speed is the energy input sufficient to overcome the stabilizing buoyancy flux and thereby induce marginal instability. The differing shear regimes explain differences in the timing and magnitude of diurnal sea surface temperature anomalies.

2017 ◽  
Vol 56 (11) ◽  
pp. 3035-3047 ◽  
Author(s):  
Steven J. A. van der Linden ◽  
Peter Baas ◽  
J. Antoon van Hooft ◽  
Ivo G. S. van Hooijdonk ◽  
Fred C. Bosveld ◽  
...  

AbstractGeostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, the Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin–Obukhov stability parameter (z/L), or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speeds are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics and composite profiles of wind and temperature are systematically investigated. The classification is found to result in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds, turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a comprehensive description of other thermodynamic processes such as soil heat conduction and radiative transfer.


2009 ◽  
Vol 55 (193) ◽  
pp. 829-833 ◽  
Author(s):  
Perry Bartelt ◽  
Brian W. McArdell

AbstractAvalanche deposits consist of rounded granules composed of aggregates of snow and ice particles. The size of the granules is related to vertical shear gradients within the flow; studying the granule-size distribution may be useful in understanding the flow and stopping of avalanches. We applied a sediment-size sampling method to measure snow granule-size distributions at different depositional environments on two dry and two wet avalanche deposits at three field sites. The granule-size distributions are approximately log-normal, similar to many natural sediment deposits. The median granule size in the wet and dry avalanches varies between 65 and 162 mm. Wet avalanches tend to produce more large granules than dry avalanches, indicating both smaller flow velocities and near-surface shear gradients. Granule size is similar in frontal lobes and levee deposits, suggesting that levee formation occurs independently of the size segregation at the avalanche front.


2017 ◽  
Vol 11 (6) ◽  
pp. 2897-2918 ◽  
Author(s):  
Valentina Radić ◽  
Brian Menounos ◽  
Joseph Shea ◽  
Noel Fitzpatrick ◽  
Mekdes A. Tessema ◽  
...  

Abstract. As part of surface energy balance models used to simulate glacier melting, choosing parameterizations to adequately estimate turbulent heat fluxes is extremely challenging. This study aims to evaluate a set of four aerodynamic bulk methods (labeled as C methods), commonly used to estimate turbulent heat fluxes for a sloped glacier surface, and two less commonly used bulk methods developed from katabatic flow models. The C methods differ in their parameterizations of the bulk exchange coefficient that relates the fluxes to the near-surface measurements of mean wind speed, air temperature, and humidity. The methods' performance in simulating 30 min sensible- and latent-heat fluxes is evaluated against the measured fluxes from an open-path eddy-covariance (OPEC) method. The evaluation is performed at a point scale of a mountain glacier, using one-level meteorological and OPEC observations from multi-day periods in the 2010 and 2012 summer seasons. The analysis of the two independent seasons yielded the same key findings, which include the following: first, the bulk method, with or without the commonly used Monin–Obukhov (M–O) stability functions, overestimates the turbulent heat fluxes over the observational period, mainly due to a substantial overestimation of the friction velocity. This overestimation is most pronounced during the katabatic flow conditions, corroborating the previous findings that the M–O theory works poorly in the presence of a low wind speed maximum. Second, the method based on a katabatic flow model (labeled as the KInt method) outperforms any C method in simulating the friction velocity; however, the C methods outperform the KInt method in simulating the sensible-heat fluxes. Third, the best overall performance is given by a hybrid method, which combines the KInt approach with the C method; i.e., it parameterizes eddy viscosity differently than eddy diffusivity. An error analysis reveals that the uncertainties in the measured meteorological variables and the roughness lengths produce errors in the modeled fluxes that are smaller than the differences between the modeled and observed fluxes. This implies that further advances will require improvement to model theory rather than better measurements of input variables. Further data from different glaciers are needed to investigate any universality of these findings.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaqi Liu ◽  
Reiji Kimura ◽  
Jing Wu

Gravels can protect soil from wind erosion, however, there is little known about the effects of fine-grained gravel on aerodynamic characteristics of the near-surface airflow. Drag coefficient, wind-speed gradient, and turbulent transfer coefficient over different coverages of gravel surfaces were investigated in a compact boundary-layer wind tunnel. The drag coefficient of the fine-grained gravel surface reached the maximum value at 15% coverage and then tended to stabilize at gravel coverage 20% and greater. At a height of 4 cm, near-surface airflow on gravel surfaces can be divided clearly into upper and lower sublayers, defined as the inertial and roughness sublayers, respectively. The coefficient of variation of wind speed over gravel surfaces in the roughness sublayer was 8.6 times that in the inertial sublayer, indicating a greater effect of gravel coverage on wind-speed fluctuations in the lower layer. At a height of 4 cm, wind-speed fluctuations under the observed wind speeds were independent of changes in gravel coverage. In addition, an energy-exchange region, where sand particles can absorb more energy from the surrounding airflow, was found between the roughness and inertial sublayers, enhancing the erosional state of wind-blown sand. This finding can be applied to evaluate the aerodynamic stability of the gravel surface in the Gobi Desert and provide a theoretical basis for elucidation of the vertical distributions of wind-blown sand flux.


Author(s):  
Shakeel Asharaf ◽  
Duane E. Waliser ◽  
Derek J. Posselt ◽  
Christopher S. Ruf ◽  
Chidong Zhang ◽  
...  

AbstractSurface wind plays a crucial role in many local/regional weather and climate processes, especially through the exchanges of energy, mass and momentum across the Earth’s surface. However, there is a lack of consistent observations with continuous coverage over the global tropical ocean. To fill this gap, the NASA Cyclone Global Navigation Satellite System (CYGNSS) mission was launched in December 2016, consisting of a constellation of eight small spacecrafts that remotely sense near surface wind speed over the tropical and sub-tropical oceans with relatively high sampling rates both temporally and spatially. This current study uses data obtained from the Tropical Moored Buoy Arrays to quantitatively characterize and validate the CYGNSS derived winds over the tropical Indian, Pacific, and Atlantic Oceans. The validation results show that the uncertainty in CYGNSS wind speed, as compared with these tropical buoy data, is less than 2 m s-1 root mean squared difference, meeting the NASA science mission Level-1 uncertainty requirement for wind speeds below 20 m s-1. The quality of the CYGNSS wind is further assessed under different precipitation conditions, and in convective cold-pool events, identified using buoy rain and temperature data. Results show that CYGNSS winds compare fairly well with buoy observations in the presence of rain, though at low wind speeds the presence of rain appears to cause a slight positive wind speed bias in the CYGNSS data. The comparison indicates the potential utility of the CYGNSS surface wind product, which in turn may help to unravel the complexities of air-sea interaction in regions that are relatively under-sampled by other observing platforms.


2021 ◽  
Vol 12 (4) ◽  
pp. 1239-1251
Author(s):  
Jan Wohland ◽  
Doris Folini ◽  
Bryn Pickering

Abstract. Near-surface winds affect many processes on planet Earth, ranging from fundamental biological mechanisms such as pollination to man-made infrastructure that is designed to resist or harness wind. The observed systematic wind speed decline up to around 2010 (stilling) and its subsequent recovery have therefore attracted much attention. While this sequence of downward and upwards trends and good connections to well-established modes of climate variability suggest that stilling could be a manifestation of multidecadal climate variability, a systematic investigation is currently lacking. Here, we use the Max Planck Institute Grand Ensemble (MPI-GE) to decompose internal variability from forced changes in wind speeds. We report that wind speed changes resembling observed stilling and its recovery are well in line with internal climate variability, both under current and future climate conditions. Moreover, internal climate variability outweighs forced changes in wind speeds on 20-year timescales by 1 order of magnitude, despite the fact that smaller, forced changes become relevant in the long run as they represent alterations of mean states. In this regard, we reveal that land use change plays a pivotal role in explaining MPI-GE ensemble-mean wind changes in the representative concentration pathways 2.6, 4.5, and 8.5. Our results demonstrate that multidecadal wind speed variability is of greater relevance than forced changes over the 21st century, in particular for wind-related infrastructure like wind energy.


2018 ◽  
Vol 57 (7) ◽  
pp. 1423-1439 ◽  
Author(s):  
Carrie E. Lang ◽  
Jessica M. McDonald ◽  
Lauriana Gaudet ◽  
Dylan Doeblin ◽  
Erin A. Jones ◽  
...  

AbstractLake-effect storms (LES) produce substantial snowfall in the vicinity of the downwind shores of the Great Lakes. These storms may take many forms; one type of LES event, lake to lake (L2L), occurs when LES clouds/snowbands develop over an upstream lake (e.g., Lake Huron), extend across an intervening landmass, and continue over a downstream lake (e.g., Lake Ontario). The current study examined LES snowfall in the vicinity of Lake Ontario and the atmospheric conditions during Lake Huron-to-Lake Ontario L2L days as compared with LES days on which an L2L connection was not present [i.e., only Lake Ontario (OLO)] for the cold seasons (October–March) from 2003/04 through 2013/14. Analyses of snowfall demonstrate that, on average, significantly greater LES snowfall totals occur downstream of Lake Ontario on L2L days than on OLO days. The difference in mean snowfall between L2L and OLO days approaches 200% in some areas near the Tug Hill Plateau and central New York State. Analyses of atmospheric conditions found more-favorable LES environments on L2L days relative to OLO days that included greater instability over the upwind lake, more near-surface moisture available, faster wind speeds, and larger surface heat fluxes over the upstream lake. Last, despite significant snowfalls on L2L days, their average contribution to the annual accumulated LES snowfall in the vicinity of Lake Ontario was found to be small (i.e., 25%–30%) because of the relatively infrequent occurrence of L2L days.


Sign in / Sign up

Export Citation Format

Share Document