Wave–Current Interaction: A Comparison of Radiation-Stress and Vortex-Force Representations

2007 ◽  
Vol 37 (5) ◽  
pp. 1122-1141 ◽  
Author(s):  
E. M. Lane ◽  
J. M. Restrepo ◽  
J. C. McWilliams

Abstract The vortex-force representation of the wave-averaged effects on currents is compared to the radiation-stress representation in a scaling regime appropriate to coastal and shelf waters. Three-dimensional and vertically integrated expressions for the conservative current equations are obtained in both representations. The vortex-force representation decomposes the main wave-averaged effects into two physically understandable concepts—a vortex force and a Bernoulli head. The vortex force is shown to be the dominant wave-averaged effect on currents. This effect can occur at higher order than the apparent leading order for the radiation-stress representation. Excluding nonconservative effects such as wave breaking, the lowest-order radiation or interaction stress can be completely characterized in terms of wave setup, forcing of long (infragravity) waves, and an Eulerian current whose divergence cancels that of the primary wave Stokes drift. The leading-order, wave-averaged dynamical effects incorporate the vortex force together with material advection by Stokes drift, modified pressure-continuity and kinematic surface boundary conditions, and parameterized representations of wave generation by the wind and breaking near the shoreline.

1999 ◽  
Vol 396 ◽  
pp. 37-71 ◽  
Author(s):  
LEONID BREVDO ◽  
PATRICE LAURE ◽  
FREDERIC DIAS ◽  
THOMAS J. BRIDGES

The film flow down an inclined plane has several features that make it an interesting prototype for studying transition in a shear flow: the basic parallel state is an exact explicit solution of the Navier–Stokes equations; the experimentally observed transition of this flow shows many properties in common with boundary-layer transition; and it has a free surface, leading to more than one class of modes. In this paper, unstable wavepackets – associated with the full Navier–Stokes equations with viscous free-surface boundary conditions – are analysed by using the formalism of absolute and convective instabilities based on the exact Briggs collision criterion for multiple k-roots of D(k, ω) = 0; where k is a wavenumber, ω is a frequency and D(k, ω) is the dispersion relation function.The main results of this paper are threefold. First, we work with the full Navier–Stokes equations with viscous free-surface boundary conditions, rather than a model partial differential equation, and, guided by experiments, explore a large region of the parameter space to see if absolute instability – as predicted by some model equations – is possible. Secondly, our numerical results find only convective instability, in complete agreement with experiments. Thirdly, we find a curious saddle-point bifurcation which affects dramatically the interpretation of the convective instability. This is the first finding of this type of bifurcation in a fluids problem and it may have implications for the analysis of wavepackets in other flows, in particular for three-dimensional instabilities. The numerical results of the wavepacket analysis compare well with the available experimental data, confirming the importance of convective instability for this problem.The numerical results on the position of a dominant saddle point obtained by using the exact collision criterion are also compared to the results based on a steepest-descent method coupled with a continuation procedure for tracking convective instability that until now was considered as reliable. While for two-dimensional instabilities a numerical implementation of the collision criterion is readily available, the only existing numerical procedure for studying three-dimensional wavepackets is based on the tracking technique. For the present flow, the comparison shows a failure of the tracking treatment to recover a subinterval of the interval of unstable ray velocities V whose length constitutes 29% of the length of the entire unstable interval of V. The failure occurs due to a bifurcation of the saddle point, where V is a bifurcation parameter. We argue that this bifurcation of unstable ray velocities should be observable in experiments because of the abrupt increase by a factor of about 5.3 of the wavelength across the wavepacket associated with the appearance of the bifurcating branch. Further implications for experiments including the effect on spatial amplification rate are also discussed.


Author(s):  
Xinshu Zhang ◽  
Robert F. Beck

Three-dimensional, time-domain, wave-body interactions are studied in this paper for cases with and without forward speed. In the present approach, an exact body boundary condition and linearized free surface boundary conditions are used. By distributing desingularized sources above the calm water surface and using constant-strength panels on the exact submerged body surface, the boundary integral equations are solved numerically at each time step. Once the fluid velocities on the free surface are computed, the free surface elevation and potential are updated by integrating the free surface boundary conditions. After each time step, the body surface and free surface are regrided due to the instantaneous changing submerged body geometry. The desingularized method applied on the free surface produces non-singular kernels in the integral equations by moving the fundamental singularities a small distance outside of the fluid domain. Constant strength panels are used for bodies with any arbitrary shape. Extensive results are presented to validate the efficiency of the present method. These results include the added mass and damping computations for a hemisphere. The calm water wave resistance for a submerged spheroid and a Wigley hull are also presented. All the computations with forward speed are started from rest and proceed until a steady state is reached. Finally, the time-domain forced motion results for a modified Wigley hull with forward speed are shown and compared with the experiments for both linear computations and body-exact computations.


Author(s):  
Mahmoud Alidadi ◽  
Sander Calisal

The effects of two base-potentials on the accuracy of a slender-body method are studied in this paper. In the formulation for this method which is developed for the slender ships, the velocity potential is decomposed into a base-potential and a perturbation potential. Then using an order of magnitude analysis, the three-dimensional flow problem is simplified into a series of two-dimensional problems for the perturbation potential. These two-dimensional problems are solved with the linearized free surface boundary conditions, using a mixed Eulerian-Lagrangian method. Finally for the two base-potentials, the numerical wave elevation along a Wigleyull are compared with the experimental results.


1978 ◽  
Vol 5 (4) ◽  
pp. 479-488 ◽  
Author(s):  
William James ◽  
Basem Eid

This paper discusses the formulation of surface boundary conditions for a three-dimensional transport model for shallow lakes, specifically for Hamilton Harbour. The same hydrodynamic equations that describe the circulation of the ocean and the Great Lakes were used in this study. However, the boundary conditions (bed topography, shoreline configuration, and surface and bottom shear stress fields) have bigger effects on circulation in shallow enclosed lakes.In this study the flow is assumed to be incompressible and in hydrostatic equilibrium. A layered system is used in which the lake is considered to consist of a number of unequal layers in the vertical. The hydrodynamic equations are integrated vertically over each layer, and both vertical and horizontal eddy viscosities are introduced.The over-water wind stress is determined using the logarithmic wind velocity distribution and Von Karman's integral equation for turbulent flow over a rough movable surface of variable roughness, in conjunction with equations for wind–wave generation. Thus the wind drag coefficient is determined as a function of wind and wave characteristics, and is time- and space-dependent.


2010 ◽  
Vol 54 (02) ◽  
pp. 79-94 ◽  
Author(s):  
Xinshu Zhang ◽  
Piotr Bandyk ◽  
Robert F. Beck

Large-amplitude, time-domain, wave-body interactions are studied in this paper for problems with forward speed. Both two-dimensional strip theory and three-dimensional computation methods are shown and compared by a number of numerical simulations. In the present approach, an exact body boundary condition and linearized free surface boundary conditions are used. By distributing desingularized sources above the calm water surface and using constant-strength flat panels on the exact body surface, the boundary integral equations are solved numerically at each time step. The strip theory method implements Radial Basis Functions to approximate the longitudinal derivatives of the velocity potential on the body. Once the fluid velocities on the free surface are computed, the free surface elevation and potential are updated by integrating the free surface boundary conditions. After each time step, the body surface and free surface are regrided due to the instantaneous changing wetted body geometry. Extensive results are presented to validate the efficiency of the present methods. These results include the added mass and damping computations for a Wigley III hull and an S-175 hull with forward speed using both two-dimensional and three-dimensional approaches. Exciting forces acting on a Wigley III hull due to regular head seas are obtained and compared using both the fully three-dimensional method and the two-dimensional strip theory. All the computational results are compared with experiments or other numerical solutions.


2020 ◽  
Author(s):  
xinlin zhang

<p>This study presents a new method to calculate displacement and potential changes caused by an earthquake in a three-dimensional viscoelastic earth model. It is the first time to compute co- and post-seismic deformation in a spherical earth with lateral heterogeneities. Such a method is useful to investigate the 3-dimensional viscoelastic structure of the earth by interpreting precise satellite gravity and GPS data. Firstly, we concern with Maxwell’s constitutive equation, the linearized equation of momentum conservation and Poisson’s equation, and obtain the solution in the Laplace domain in a spherical symmetric viscoelastic earth model. Furthermore, we employ the perturbed method to deal with the effect of lateral heterogeneities and obtain the relation between the solutions of the spherical symmetric earth model, the three-dimension earth model with lateral inhomogeneity and the auxiliary solutions. Then, using the given surface boundary conditions to determine the auxiliary solutions, we obtain the perturbed solutions of lateral increment in the Laplace domain. Finally, taking the inverse Laplace transforms of solutions in a spherical symmetric viscoelastic earth model and perturbed solutions with respect to lateral hetergeneities, we obtain the solutions of deformation in a three-dimensional viscoelastic earth model. </p>


2011 ◽  
Vol 1 (32) ◽  
pp. 34 ◽  
Author(s):  
Keisuke Nakayama ◽  
Tetsuya Shintani ◽  
Taro Kakinuma ◽  
Yasuyuki Maruya ◽  
Yoshinori Yonome ◽  
...  

This paper describes the influence of surface waves on salt-wedge intrusion in terms of radiation stress. Radiation stress may increase salt-wedge intrusion when surface waves propagate up a river. This study thus aims to reveal the effect of radiation stress on the distance of salt-wedge intrusion by using fully nonlinear strongly dispersive internal wave equations and three-dimensional numerical computation model, Fantom3D. Fully nonlinear strongly dispersive internal wave model reveals the possibility that large radiation stress is induced near the river mouth and increases the distance of salt-wedge intrusion. Three-dimensional numerical model also demonstrates that there is a significant difference in the intrusion distance by taking into account radiation stress.


1988 ◽  
Vol 130 ◽  
Author(s):  
K. Jagannadham ◽  
J. Narayan

AbstractThe generation of misfit dislocation loops in three-dimensional epitaxial islands grown on thick substrates is analyzed. The coherent strain in the island is described by virtual interfacial dislocation loops situated in the interface. The traction free surface boundary conditions are satisfied by the surface dislocation loops situated on the surface of the island. A misfit dislocation loop is formed and the changes in the energy of the configuration used to determine if the total energy is lowered. The numerical analysis is carried out forhemispherical islands of GaAs grown on (100) silicon with a misfit dislocation of Burgers vector 3.84 Å. It has been found energetically favorable to nucleate a misfit dislocation loop at a distance of 3 å from the interface when the radius of the hemispherical island is equal to or greater than 40 å. In addition, a misfit dislocation loop could be nucleated at a larger distance from the interface when the size of the island is larger.


2019 ◽  
Vol 19 (12) ◽  
pp. 1950159 ◽  
Author(s):  
Dongjian Zhang ◽  
Xitao Zheng ◽  
Chongzhe Wang ◽  
Zhen Wu

In this paper, first a complete buckling experiment of the sandwich beams with the foam core is carried out, which includes the manufacturing of specimens and their experimental verification. Second, a refined sinusoidal zig-zag theory (RSZT) is established, which can describe the zig-zag effect during the in-plane compression of sandwich beam and accommodate the transverse shear free surface boundary conditions. Based on the established model combined with Hu–Washizu variational principle, a two-node beam element has been developed to address the buckling problem of the sandwich beams. Thus, the established beam element is able to accommodate interlaminar continuous conditions of transverse shear stress. Several examples have been investigated to validate the accuracy of the established method. The comparative analysis of the results including experimental data, the results acquired from three-dimensional finite element (3D-FEM) and diverse models has been made. Comparative analysis shows that the accurate buckling loads can be acquired from the established model. Nevertheless, other models discarding the continuous conditions of transverse stresses among the adjacent layers largely overestimate the critical loads.


Sign in / Sign up

Export Citation Format

Share Document