scholarly journals Evaluation of the Hurricane Research Division Doppler Radar Analysis Software Using Synthetic Data

2013 ◽  
Vol 30 (6) ◽  
pp. 1055-1071 ◽  
Author(s):  
Sylvie Lorsolo ◽  
John Gamache ◽  
Altug Aksoy

Abstract The Hurricane Research Division Doppler radar analysis software provides three-dimensional analyses of the three wind components in tropical cyclones. Although this software has been used for over a decade, there has never been a complete and in-depth evaluation of the resulting analyses. The goal here is to provide an evaluation that will permit the best use of the analyses, but also to improve the software. To evaluate the software, analyses are produced from simulated radar data acquired from an output of a Hurricane Weather Research and Forecasting (HWRF) model nature run and are compared against the model “truth” wind fields. Comparisons of the three components of the wind show that the software provides analyses of good quality. The tangential wind is best retrieved, exhibiting an overall small mean error of 0.5 m s−1 at most levels and a root-mean-square error less than 2 m s−1. The retrieval of the radial wind is also quite accurate, exhibiting comparable errors, although the accuracy of the tangential wind is generally better. Some degradation of the retrieval quality is observed at higher altitude, mainly due to sparser distribution of data in the model. The vertical component of the wind appears to be the most challenging to retrieve, but the software still provides acceptable results. The tropical cyclone mean azimuthal structure and wavenumber structure are found to be very well captured. Sources of errors inherent to airborne Doppler measurements and the effects of some of the simplifications used in the simulation methodology are also discussed.

2010 ◽  
Vol 3 (5) ◽  
pp. 4459-4495 ◽  
Author(s):  
C. López Carrillo ◽  
D. J. Raymond

Abstract. In this work, we describe an efficient approach for wind retrieval from dual Doppler radar data. The approach produces a gridded field that not only satisfies the observations, but also satisfies the anelastic mass continuity equation. The method is based on the so-called three-dimensional variational approach to the retrieval of wind fields from radar data. The novelty consists in separating the task into steps that reduce the amount of data processed by the global minimization algorithm, while keeping the most relevant information from the radar observations. The method is flexible enough to incorporate observations from several radars, accommodate complex sampling geometries, and readily include dropsonde or sounding observations in the analysis. We demonstrate the usefulness of our method by analyzing a real case with data collected during the TPARC/TCS-08 field campaign.


2012 ◽  
Vol 140 (5) ◽  
pp. 1603-1619 ◽  
Author(s):  
Yu-Chieng Liou ◽  
Shao-Fan Chang ◽  
Juanzhen Sun

This study develops an extension of a variational-based multiple-Doppler radar synthesis method to construct the three-dimensional wind field over complex topography. The immersed boundary method (IBM) is implemented to take into account the influence imposed by a nonflat surface. The IBM has the merit of providing realistic topographic forcing without the need to change the Cartesian grid configuration into a terrain-following coordinate system. Both Dirichlet and Neumann boundary conditions for the wind fields can be incorporated. The wind fields above the terrain are obtained by variationally adjusting the solutions to satisfy a series of weak constraints, which include the multiple-radar radial velocity observations, anelastic continuity equation, vertical vorticity equation, background wind, and spatial smoothness terms. Experiments using model-simulated data reveal that the flow structures over complex orography can be successfully retrieved using radial velocity measurements from multiple Doppler radars. The primary advantages of the original synthesis method are still maintained, that is, the winds along and near the radar baseline are well retrieved, and the resulting three-dimensional flow fields can be used directly for vorticity budget diagnosis. If compared with the traditional wind synthesis algorithm, this method is able to merge data from different sources, and utilize data from any number of radars. This provides more flexibility in designing various scanning strategies, so that the atmosphere may be probed more efficiently using a multiple-radar network. This method is also tested using the radar data collected during the Southwest Monsoon Experiment (SoWMEX), which was conducted in Taiwan from May to June 2008 with reasonable results being obtained.


2013 ◽  
Vol 52 (11) ◽  
pp. 2493-2508 ◽  
Author(s):  
Xiaomin Chen ◽  
Kun Zhao ◽  
Wen-Chau Lee ◽  
Ben Jong-Dao Jou ◽  
Ming Xue ◽  
...  

AbstractThe ground-based velocity track display (GBVTD) was developed to deduce a three-dimensional primary circulation of landfalling tropical cyclones from single-Doppler radar data. However, the cross-beam component of the mean wind cannot be resolved and is consequently aliased into the retrieved axisymmetric tangential wind . Recently, the development of the hurricane volume velocity processing method (HVVP) enabled the independent estimation of ; however, HVVP is potentially limited by the unknown accuracy of empirical assumptions used to deduce the modified Rankine-combined vortex exponent . By combing the GBVTD with HVVP techniques, this study proposes a modified GBVTD method (MGBVTD) to objectively deduce from the GBVTD technique and provide a more accurate estimation of and via an iterative procedure to reach converged and cross-beam component of solutions. MGBVTD retains the strength of both algorithms but avoids their weaknesses. The results from idealized experiments demonstrate that the MGBVTD-retrieved cross-beam component of is within 2 m s−1 of reality. MGBVTD was applied to Hurricane Bret (1999) whose inner core was captured simultaneously by two Weather Surveillance Radar-1988 Doppler (WSR-88D) instruments. The MGBVTD-retrieved cross-beam component of from single-Doppler radar data is very close to that from dual-Doppler radar synthesis using extended GBVTD (EGBVTD); their difference is less than 2 m s−1. The mean difference in the MGBVTD-retrieved from the two radars is ~2 m s−1, which is significantly smaller than that resolved in GBVTD retrievals (~5 m s−1).


2011 ◽  
Vol 4 (12) ◽  
pp. 2717-2733 ◽  
Author(s):  
C. López Carrillo ◽  
D. J. Raymond

Abstract. In this work, we describe an efficient approach for wind retrieval from dual Doppler radar data. The approach produces a gridded field that not only satisfies the observations, but also satisfies the anelastic mass continuity equation. The method is based on the so-called three-dimensional variational approach to the retrieval of wind fields from radar data. The novelty consists in separating the task into steps that reduce the amount of data processed by the global minimization algorithm, while keeping the most relevant information from the radar observations. The method is flexible enough to incorporate observations from several radars, accommodate complex sampling geometries, and readily include dropsonde or sounding observations in the analysis. We demonstrate the usefulness of our method by analyzing a real case with data collected during the TPARC/TCS-08 field campaign.


2013 ◽  
Vol 13 (10) ◽  
pp. 26795-26840
Author(s):  
L. L. Lussier ◽  
M. T. Montgomery ◽  
M. M. Bell

Abstract. Aircraft reconnaissance data collected during the Tropical Cyclone Structure 2008 field campaign are used to examine further kinematical, dynamical and thermodynamical aspects of the genesis of Typhoon Nuri. Data from the first two missions into the pre-Nuri disturbance document the transition from a tropical wave to a tropical depression. Dropwindsonde-derived tangential wind profiles at several radii from the low-level circulation center indicate that the magnitude of low-level circulation increases and that the corresponding tangential velocity maximum moves inward from the first to second reconnaissance mission. To compliment these findings, a three-dimensional variational analysis incorporating both dropwindsonde and aircraft Doppler radar data is conducted. These data are used to perform circulation tendency calculations at multiple distances from the low-level circulation center. The results demonstrate a net spin-up of the system-scale circulation in the low-levels near the center and in the outer regions of the recirculating Kelvin cat's eye circulation. In these regions, the spin-up tendency due to the influx of cyclonic absolute vorticity exceeds the frictional spin-down tendency for both Nuri missions. The system-scale spin up is found to be accompanied by areas of low-level vorticity concentration through vortex-tube stretching associated with cumulus convection. The areal coverage and intensity of these high-vorticity regions increase between the first and second Nuri missions. The findings of this study are consistent in some respects to the Nuri observational analysis carried out by Raymond and Lopez (2011), but differ in their suggested key result and related scientific implication that the pre-Nuri disturbance was spinning down on the first day of observations. The findings herein strongly support a recent tropical cyclogenesis model positing that the Kelvin cat's eye circulation of the parent wave-like disturbance provides a favorable environment for convective-vorticity organization and low-level spin-up on the mesoscale.


2014 ◽  
Vol 14 (16) ◽  
pp. 8795-8812 ◽  
Author(s):  
L. L. Lussier III ◽  
M. T. Montgomery ◽  
M. M. Bell

Abstract. Aircraft reconnaissance data collected during the Tropical Cyclone Structure 2008 field campaign are used to examine further kinematical, dynamical, and thermodynamical aspects of the genesis of Typhoon Nuri. Data from the first two missions into the pre-Nuri disturbance document the transition from a tropical wave to a tropical depression. Dropwindsonde-derived tangential wind profiles at several radii from the low-level circulation center indicate that the magnitude of low-level circulation increases and that the corresponding tangential velocity maximum moves inward from the first to second reconnaissance mission. To compliment these findings, a three-dimensional variational analysis incorporating both dropwindsonde and aircraft Doppler radar data is conducted. These data are used to perform circulation tendency calculations at multiple distances from the low-level circulation center. The results demonstrate a net spin-up of the system-scale circulation in the low levels near the center and in the outer regions of the recirculating Kelvin cat's eye circulation. In these regions, the spin-up tendency due to the influx of cyclonic absolute vorticity exceeds the frictional spin-down tendency for both Nuri missions. The system-scale spin-up is found to be accompanied by areas of low-level vorticity concentration through vortex-tube stretching associated with cumulus convection. The areal coverage and intensity of these high-vorticity regions increase between the first and second Nuri missions. The findings of this study are consistent in some respects to the Nuri observational analysis carried out by Raymond and López-Carrillo (2011), but differ in their suggested key results and related scientific implications that the pre-Nuri disturbance was spinning down in the planetary boundary layer on the first day of observations. The findings herein strongly support a recent tropical cyclogenesis model positing that the Kelvin cat's eye circulation of the parent wave-like disturbance provides a favorable environment for convective vorticity organization and low-level spin-up on the mesoscale.


2011 ◽  
Vol 68 (8) ◽  
pp. 1620-1636 ◽  
Author(s):  
Anthony C. Didlake ◽  
Robert A. Houze

Abstract Airborne Doppler radar data collected from the concentric eyewalls of Hurricane Rita (2005) provide detailed three-dimensional kinematic observations of the secondary eyewall feature. The secondary eyewall radar echo shows a ring of heavy precipitation containing embedded convective cells, which have no consistent orientation or radial location. The axisymmetric mean structure has a tangential wind maximum within the reflectivity maximum at 2-km altitude and an elevated distribution of its strongest winds on the radially outer edge. The corresponding vertical vorticity field contains a low-level maximum on the inside edge, which is part of a tube of increased vorticity that rises through the center of the reflectivity tower and into the midlevels. The secondary circulation consists of boundary layer inflow that radially overshoots the secondary eyewall. A portion of this inflowing air experiences convergence and supergradient forces that cause the air to rise and flow radially outward back into the center of the reflectivity tower. This mean updraft stretches and tilts the vorticity field to increase vorticity on the radially inner side of the tangential wind maximum. Radially outside this region, perturbation motions decrease the vorticity at a comparable rate. Thus, both mean and perturbation motions actively strengthen the wind maximum of the secondary eyewall. These features combine to give the secondary eyewall a structure different from the primary eyewall as it builds to become the new replacement eyewall.


2021 ◽  
Author(s):  
José Antonio Benavent-Oltra ◽  
Djordje Romanic ◽  
Milos Lompar ◽  
Massimiliano Burlando

<p>In this work, two-dimensional (2D) wind fields retrieved by SingleDop software using scanning Doppler lidar data are compared with anemometric measurements in Genoa (Italy). SingleDop is a software module based on the theoretical work described in Xu et al. (2006), which is intended to retrieve 2D low-level winds from either real or simulated Doppler radar data. The lidar used in this work is a three-dimensional (3D) scanning WindCube 400S lidar, developed by Leosphere (France), which scans the azimuthal range of 100º –250º, up to a maximum distance of 14 km in the radial direction, for 4 elevations corresponding to 2.5º, 5°, 7.5° and 10º from the horizontal. The anemometer used for comparison is located about 1.3 km (horizontally) from the Doppler lidar and provides the wind velocity with a sampling rate of 1 Hz.</p><p>The dataset analyzed is from November 2019 to June 2020. The total number of available lidar scans per day is ~420 for each elevation (2.5º, 5º, 7.5º and 10º). The 2D wind fields are retrieved by SingleDop for different de-correlated lengths (L= 10, 5 and 1 km). The overall number of measurements available for the comparison is therefore approximately 420 scans per day <em>×</em> 180 days <em>× </em>4 heights <em>× </em>3 L, which results in nearly 10<sup>6</sup> wind velocity values. The wind direction retrieved by SingleDop properly corresponds to the anemometric data with a  BIAS ~13º, RMSE ~40º and a circular correlation of 0.8. Concerning the wind intensity, the results obtained for L = 5 km show the best agreement with the anemometric measurements with a BIAS of 0.8 m/s, RMSE around 1.8 m/s and a correlation coefficient higher than 0.9. Both for wind direction and velocity, the BIAS and RMSE slightly increase with the elevation whereas the circular and linear correlations decrease, as expected due to the increasing distance between lidar and anemometric measurements.</p>


2018 ◽  
Vol 33 (1) ◽  
pp. 71-88 ◽  
Author(s):  
Shibo Gao ◽  
Juanzhen Sun ◽  
Jinzhong Min ◽  
Ying Zhang ◽  
Zhuming Ying

Abstract Radar reflectivity observations contain valuable information on precipitation and have been assimilated into numerical weather prediction models for improved microphysics initialization. However, low-reflectivity (or so-called no rain) echoes have often been ignored or not effectively used in radar data assimilation schemes. In this paper, a scheme to assimilate no-rain radar observations is described within the framework of the Weather Research and Forecasting Model’s three-dimensional variational data assimilation (3DVar) system, and its impact on precipitation forecasts is demonstrated. The key feature of the scheme is a neighborhood-based approach to adjusting water vapor when a grid point is deemed as no rain. The performance of the scheme is first examined using a severe convective case in the Front Range of the Colorado Rocky Mountains and then verified by running the 3DVar system in the same region, with and without the no-rain assimilation scheme for 68 days and 3-hourly rapid update cycles. It is shown that the no-rain data assimilation method reduces the bias and false alarm ratio of precipitation over its counterpart without that assimilation. The no-rain assimilation also improved humidity, temperature, and wind fields, with the largest error reduction in the water vapor field, both near the surface and at upper levels. It is also shown that the advantage of the scheme is in its ability to conserve total water content in cycled radar data assimilation, which cannot be achieved by assimilating only precipitation echoes.


Author(s):  
Alexander J. DesRosiers ◽  
Michael M. Bell ◽  
Ting-Yu Cha

AbstractThe landfall of Hurricane Michael (2018) at category 5 intensity occurred after rapid intensification (RI) spanning much of the storm’s lifetime. Four Hurricane Hunter aircraft missions observed the RI period with tail Doppler radar (TDR). Data from each of the 14 aircraft passes through the storm were quality controlled via a combination of interactive and machine learning techniques. TDR data from each pass were synthesized using the SAMURAI variational wind retrieval technique to yield three-dimensional kinematic fields of the storm to examine inner core processes during RI. Vorticity and angular momentum increased and concentrated in the eyewall region. A vorticity budget analysis indicates the tendencies became more axisymmetric over time. In this study we focus in particular on how the eyewall vorticity tower builds vertically into the upper levels. Horizontal vorticity associated with the vertical gradient of tangential wind was tilted into the vertical by the eyewall updraft to yield a positive vertical vorticity tendency inward atop the existing vorticity tower, that is further developed locally upward and outward along the sloped eyewall through advection and stretching. Observed maintenance of thermal wind balance from a thermodynamic retrieval shows evidence of a strengthening warm core, which aided in lowering surface pressure and further contributed to the efficient intensification in the latter stages of this RI event.


Sign in / Sign up

Export Citation Format

Share Document