A Neural-Network Quality Control scheme for improved Quantitative Precipitation Estimation accuracy on the UK weather radar network

Author(s):  
Nawal Husnoo ◽  
Timothy Darlington ◽  
Sebastián Torres ◽  
David Warde

AbstractIn this work, we present a new Quantitative-Precipitation-Estimation (QPE) quality-control (QC) algorithm for the UK weather radar network. The real-time adaptive algorithm uses a neural network (NN) to select data from the lowest useable elevation scan to optimize the combined performance of two other radar data correction algorithms: ground clutter mitigation (using CLEAN-AP) and vertical profile of reflectivity (VPR) correction. The NN is trained using 3D tiles of observed uncontaminated weather signals that are systematically combined with ground-clutter signals collected under dry weather conditions. This approach provides a way to simulate radar signals with a wide range of clutter contamination conditions and with realistic spatial structures while providing the uncontaminated “truth” with respect to which the performance of the QC algorithm can be measured. An evaluation of QPE products obtained with the proposed QC algorithm demonstrates superior performance as compared to those obtained with the QC algorithm currently used in operations. Similar improvements are also illustrated using radar observations from two periods of prolonged precipitation, showing a better balance between overestimation errors from using clutter-contaminated low-elevation radar data and VPR-induced errors from using high-elevation radar data.

Geomatics ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 347-368
Author(s):  
Tomeu Rigo ◽  
Maria Carmen Llasat ◽  
Laura Esbrí

The single polarization C-Band weather radar network of the Meteorological Service of Catalonia covers the entire region (32,000 km2), which allows it to apply a series of corrections that improve preliminary estimations of the rainfall field (hourly and daily). In addition, an automatic re-processing using automatic weather stations helps to incorporate ground-based information. The last process of the quantitative precipitation estimation (QPE) is running the end-product again eight days later, when the data have been reviewed and corrected in the case of detecting anomalies in the radar or gauge data. These corrections are applied operationally, with the fields generated and stored automatically. The QPE fields are generated in the GeoTIFF format, allowing easy use with multiple applications and simplifying processes such as quality control. In this way, the analysis of a 10 year period of GeoTIFF QPE daily data compared with ground rainfall values is introduced. The results help to understand different points regarding the functioning of the network such as the dependance on the type of precipitation and the seasonality. In addition, the description of a heavy rainfall episode (22 October 2019) shows the variations and improvements in the different products. The main conclusions refer to how using GeoTIFF combined with point data (rain gauges), it is possible to ensure simple but effective quality control of an operational radar network.


2014 ◽  
Vol 31 (6) ◽  
pp. 1234-1249 ◽  
Author(s):  
Valliappa Lakshmanan ◽  
Christopher Karstens ◽  
John Krause ◽  
Lin Tang

Abstract Because weather radar data are commonly employed in automated weather applications, it is necessary to censor nonmeteorological contaminants, such as bioscatter, instrument artifacts, and ground clutter, from the data. With the operational deployment of a widespread polarimetric S-band radar network in the United States, it has become possible to fully utilize polarimetric data in the quality control (QC) process. At each range gate, a pattern vector consisting of the values of the polarimetric and Doppler moments, and local variance of some of these features, as well as 3D virtual volume features, is computed. Patterns that cannot be preclassified based on correlation coefficient ρHV, differential reflectivity Zdr, and reflectivity are presented to a neural network that was trained on historical data. The neural network and preclassifier produce a pixelwise probability of precipitation at that range gate. The range gates are then clustered into contiguous regions of reflectivity, with bimodal clustering carried out close to the radar and clustering based purely on spatial connectivity farther away from the radar. The pixelwise probabilities are averaged within each cluster, and the cluster is either retained or censored depending on whether this average probability is greater than or less than 0.5. The QC algorithm was evaluated on a set of independent cases and found to perform well, with a Heidke skill score (HSS) of about 0.8. A simple gate-by-gate classifier, consisting of three simple rules, is also introduced in this paper and can be used if the full QC method is not able to be applied. The simple classifier has an HSS of about 0.6 on the independent dataset.


2021 ◽  
Vol 893 (1) ◽  
pp. 012054
Author(s):  
M F Handoyo ◽  
M P Hadi ◽  
S Suprayogi

Abstract A weather radar is an active system remote sensing tool that observes precipitation indirectly. Weather radar has an advantage in estimating precipitation because it has a high spatial resolution (up to 0.5 km). Reflectivity generated by weather radar still has signal interference caused by attenuation factors. Attenuation causes the Quantitative Precipitation Estimation (QPE) by the C-band weather radar to underestimate. Therefore attenuation correction on C-band weather radar is needed to eliminate precipitation estimation errors. This study aims to apply attenuation correction to determine Quantitative Precipitation Estimation (QPE) on the c-band weather radar in Bengkulu in December 2018. Gate-by-gate method attenuation correction with Kraemer approach has applied to c-band weather radar data from the Indonesian Agency for Meteorology and Geophysics (BMKG) weather radar network Bengkulu. This method uses reflectivity as the only input. Quantitative Precipitation Estimation (QPE) has obtained by comparing weather radar-based rain estimates to 10 observation rain gauges over a month with the Z-R relation equation. Root Mean Square Error (RMSE) is used to calculate the estimation error. Weather radar data are processed using Python-based libraries Wradlib and ArcGIS 10.5. As a result, the calculation between the weather radar estimate precipitation and the observed rainfall obtained equation Z=2,65R1,3. The attenuation correction process with Kreamer's approach on the c-band weather radar has reduced error in the Qualitative Precipitation Estimation (QPE). Corrected precipitation has a smaller error value (r = 0.88; RMSE = 8.38) than the uncorrected precipitation (r = 0.83; RMSE = 11.70).


2020 ◽  
Vol 37 (9) ◽  
pp. 1521-1537
Author(s):  
Lin Tang ◽  
Jian Zhang ◽  
Micheal Simpson ◽  
Ami Arthur ◽  
Heather Grams ◽  
...  

AbstractThe Multi-Radar-Multi-Sensor (MRMS) system was transitioned into operations at the National Centers for Environmental Prediction in the fall of 2014. It provides high-quality and high-resolution severe weather and precipitation products for meteorology, hydrology, and aviation applications. Among processing modules, the radar data quality control (QC) plays a critical role in effectively identifying and removing various nonhydrometeor radar echoes for accurate quantitative precipitation estimation (QPE). Since its initial implementation in 2014, the radar QC has undergone continuous refinements and enhancements to ensure its robust performance across seasons and all regions in the continental United States and southern Canada. These updates include 1) improved melting-layer delineation, 2) clearance of wind farm contamination, 3) mitigation of corrupt data impacts due to hardware issues, 4) mitigation of sun spikes, and 5) mitigation of residual ground/lake/sea clutter due to sidelobe effects and anomalous propagation. This paper provides an overview of the MRMS radar data QC enhancements since 2014.


2021 ◽  
Vol 13 (2) ◽  
pp. 217
Author(s):  
Chong Wu ◽  
Liping Liu ◽  
Chao Chen ◽  
Chian Zhang ◽  
Guangxin He ◽  
...  

China New Generation Doppler Weather Radar (CINRAD) plans to upgrade its hardware and software to achieve polarimetric function. However, the small-magnitude polarimetric measurements were negatively affected by the scattering characteristics of ground clutter and the filter’s response to the ground clutter. This polarimetric contamination was characterized by decreased differential reflectivity (ZDR) and cross-correlation coefficient (ρhv), as well as an increased standard deviation of the differential phase (ΦDP), generating a large-area and long-term observational anomaly for eight polarimetric radars in South China. Considering that outliers simultaneously appeared in the radar mainlobe and sidelobe, the variations in the reflectivity before and after clutter mitigation (ΔZH) and ρhv were used for quantitatively describing the random dispersion caused by mainlobe and sidelobe clutters. The performance of polarimetric algorithms was also reduced by clutter contamination. The deteriorated membership functions in the hydrometeor classification algorithm changed the proportion of classified echoes. The empirical relations of R(ZH, ZDR) and R(KDP) were broken in the quantitative precipitation estimation algorithm and the extra error considerably exceeded the uncertainty caused by the drop-size distribution (DSD) variability of R(ZH). The above results highlighted the negative impact of clutter contamination on polarimetric applications that need to be further investigated.


2020 ◽  
Vol 59 (4) ◽  
pp. 589-604 ◽  
Author(s):  
John Y. N. Cho ◽  
James M. Kurdzo

ABSTRACTA monetized flash flood casualty reduction benefit model is constructed for application to meteorological radar networks. Geospatial regression analyses show that better radar coverage of the causative rainfall improves flash flood warning performance. Enhanced flash flood warning performance is shown to decrease casualty rates. Consequently, these two effects in combination allow a model to be formed that links radar coverage to flash flood casualty rates. When this model is applied to the present-day contiguous U.S. weather radar network, results yield a flash flood–based benefit of $316 million (M) yr−1. The remaining benefit pools are more modest ($13 M yr−1 for coverage improvement and $69 M yr−1 maximum for all areas of radar quantitative precipitation estimation improvements), indicative of the existing weather radar network’s effectiveness in supporting the flash flood warning decision process.


2021 ◽  
Vol 13 (3) ◽  
pp. 351
Author(s):  
Zbyněk Sokol ◽  
Jan Szturc ◽  
Johanna Orellana-Alvear ◽  
Jana Popová ◽  
Anna Jurczyk ◽  
...  

Radar-based rainfall information has been widely used in hydrological and meteorological applications, as it provides data with a high spatial and temporal resolution that improve rainfall representation. However, the broad diversity of studies makes it difficult to gather a condensed overview of the usefulness and limitations of radar technology and its application in particular situations. In this paper, a comprehensive review through a categorization of radar-related topics aims to provide a general picture of the current state of radar research. First, the importance and impact of the high temporal resolution of weather radar is discussed, followed by the description of quantitative precipitation estimation strategies. Afterwards, the use of radar data in rainfall nowcasting as well as its role in preparation of initial conditions for numerical weather predictions by assimilation is reviewed. Furthermore, the value of radar data in rainfall-runoff models with a focus on flash flood forecasting is documented. Finally, based on this review, conclusions of the most relevant challenges that need to be addressed and recommendations for further research are presented. This review paper supports the exploitation of radar data in its full capacity by providing key insights regarding the possibilities of including radar data in hydrological and meteorological applications.


2015 ◽  
Vol 32 (7) ◽  
pp. 1341-1355 ◽  
Author(s):  
S. J. Rennie ◽  
M. Curtis ◽  
J. Peter ◽  
A. W. Seed ◽  
P. J. Steinle ◽  
...  

AbstractThe Australian Bureau of Meteorology’s operational weather radar network comprises a heterogeneous radar collection covering diverse geography and climate. A naïve Bayes classifier has been developed to identify a range of common echo types observed with these radars. The success of the classifier has been evaluated against its training dataset and by routine monitoring. The training data indicate that more than 90% of precipitation may be identified correctly. The echo types most difficult to distinguish from rainfall are smoke, chaff, and anomalous propagation ground and sea clutter. Their impact depends on their climatological frequency. Small quantities of frequently misclassified persistent echo (like permanent ground clutter or insects) can also cause quality control issues. The Bayes classifier is demonstrated to perform better than a simple threshold method, particularly for reducing misclassification of clutter as precipitation. However, the result depends on finding a balance between excluding precipitation and including erroneous echo. Unlike many single-polarization classifiers that are only intended to extract precipitation echo, the Bayes classifier also discriminates types of nonprecipitation echo. Therefore, the classifier provides the means to utilize clear air echo for applications like data assimilation, and the class information will permit separate data handling of different echo types.


2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Daniel Michelson ◽  
Bjarne Hansen ◽  
Dominik Jacques ◽  
François Lemay ◽  
Peter Rodriguez

2017 ◽  
Vol 19 (1) ◽  
pp. 112-121
Author(s):  
Jeongho Choi ◽  
Myoungsun Han ◽  
Chulsang Yoo ◽  
Jiho Lee

Sign in / Sign up

Export Citation Format

Share Document