A Coupled-Pixel Model (CPM) Atmospheric Retrieval Algorithm for High-Resolution Imagers

2015 ◽  
Vol 32 (10) ◽  
pp. 1866-1879 ◽  
Author(s):  
Mary Morris ◽  
Christopher S. Ruf

AbstractLow-frequency passive microwave observations allow for oceanic remote sensing of surface wind speed and rain rate from spaceborne and airborne platforms. For most instruments, the modeling of contributions of rain absorption and reemission in a particular field of view is simplified by the observing geometry. However, the simplifying assumptions that can be applied in most applications are not always valid for the scenes that the airborne Hurricane Imaging Radiometer (HIRAD) regularly observes. Collocated Stepped Frequency Microwave Radiometer (SFMR) and HIRAD observations of Hurricane Earl (2010) indicate that retrieval algorithms based on the usual simplified model, referred to here as the decoupled-pixel model (DPM), are not able to resolve two neighboring rainbands at the edge of HIRAD’s swath. The DPM does not allow for the possibility that a single column of atmosphere can affect the observations at multiple cross-track positions. This motivates the development of a coupled-pixel model (CPM) that is developed and tested in this paper. Simulated observations as well as HIRAD’s observations of Hurricane Earl (2010) are used to test the CPM algorithm. Key to the performance of the CPM algorithm is its ability to deconvolve the cross-track scene, as well as unscramble the signatures of surface wind speed and rain rate in HIRAD’s observations. While the CPM approach was developed specifically for HIRAD, other sensors could employ this method in similar complicated observing scenarios.

2010 ◽  
Vol 138 (2) ◽  
pp. 421-437 ◽  
Author(s):  
Yves Quilfen ◽  
Bertrand Chapron ◽  
Jean Tournadre

Abstract Sea surface estimates of local winds, waves, and rain-rate conditions are crucial to complement infrared/visible satellite images in estimating the strength of tropical cyclones (TCs). Satellite measurements at microwave frequencies are thus key elements of present and future observing systems. Available for more than 20 years, passive microwave measurements are very valuable but still suffer from insufficient resolution and poor wind vector retrievals in the rainy conditions encountered in and around tropical cyclones. Scatterometer and synthetic aperture radar active microwave measurements performed at the C and Ku band on board the European Remote Sensing (ERS), the Meteorological Operational (MetOp), the Quick Scatterometer (QuikSCAT), the Environmental Satellite (Envisat), and RadarSat satellites can also be used to map the surface wind field in storms. Their accuracy is limited in the case of heavy rain and possible saturation of the microwave signals is reported. Altimeter dual-frequency measurements have also been shown to provide along-track information related to surface wind speed, wave height, and vertically integrated rain rate at about 6-km resolution. Although limited for operational use by their dimensional sampling, the dual-frequency capability makes altimeters a unique satellite-borne sensor to perform measurements of key surface parameters in a consistent way. To illustrate this capability two Jason-1 altimeter passes over Hurricanes Isabel and Wilma are examined. The area of maximum TC intensity, as described by the National Hurricane Center and by the altimeter, is compared for these two cases. Altimeter surface wind speed and rainfall-rate observations are further compared with measurements performed by other remote sensors, namely, the Tropical Rainfall Measuring Mission instruments and the airborne Stepped Frequency Microwave Radiometer.


2016 ◽  
Vol 33 (7) ◽  
pp. 1363-1375 ◽  
Author(s):  
Sungwook Hong ◽  
Hwa-Jeong Seo ◽  
Young-Joo Kwon

AbstractThis study proposes a sea surface wind speed retrieval algorithm (the Hong wind speed algorithm) for use in rainy and rain-free conditions. It uses a combination of satellite-observed microwave brightness temperatures, sea surface temperatures, and horizontally polarized surface reflectivities from the fast Radiative Transfer for TOVS (RTTOV), and surface and atmospheric profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF). Regression relationships between satellite-observed brightness temperature and satellite-simulated brightness temperatures, satellite-simulated brightness temperatures, rough surface reflectivities, and between sea surface roughness and sea surface wind speed are derived from the Advanced Microwave Scanning Radiometer 2 (AMSR-2). Validation results of sea surface wind speed between the proposed algorithm and the Tropical Atmosphere Ocean (TAO) data show that the estimated bias and RMSE for AMSR-2 6.925- and 10.65-GHz bands are 0.09 and 1.13 m s−1, and −0.52 and 1.21 m s−1, respectively. Typhoon intensities such as the current intensity (CI) number, maximum wind speed, and minimum pressure level based on the proposed technique (the Hong technique) are compared with best-track data from the Japan Meteorological Agency (JMA), the Joint Typhoon Warning Center (JTWC), and the Cooperative Institute for Mesoscale Meteorological Studies (CIMSS) for 13 typhoons that occurred in the northeastern Pacific Ocean throughout 2012. Although the results show good agreement for low- and medium-range typhoon intensities, the discrepancy increases with typhoon intensity. Consequently, this study provides a useful retrieval algorithm for estimating sea surface wind speed, even during rainy conditions, and for analyzing characteristics of tropical cyclones.


2020 ◽  
Vol 13 (12) ◽  
pp. 6889-6899
Author(s):  
Robert R. Nelson ◽  
Annmarie Eldering ◽  
David Crisp ◽  
Aronne J. Merrelli ◽  
Christopher W. O'Dell

Abstract. Satellite measurements of surface wind speed over the ocean inform a wide variety of scientific pursuits. While both active and passive microwave sensors are traditionally used to detect surface wind speed over water surfaces, measurements of reflected sunlight in the near-infrared made by the Orbiting Carbon Observatory-2 (OCO-2) are also sensitive to the wind speed. In this work, retrieved wind speeds from OCO-2 glint measurements are validated against the Advanced Microwave Scanning Radiometer-2 (AMSR2). Both sensors are in the international Afternoon Constellation (A-Train), allowing for a large number of co-located observations. Several different OCO-2 retrieval algorithm modifications are tested, with the most successful being a single-band Cox–Munk-only model. Using this, we find excellent agreement between the two sensors, with OCO-2 having a small mean bias against AMSR2 of −0.22 m s−1, an RMSD of 0.75 m s−1, and a correlation coefficient of 0.94. Although OCO-2 is restricted to clear-sky measurements, potential benefits of its higher spatial resolution relative to microwave instruments include the study of coastal wind processes, which may be able to inform certain economic sectors.


2008 ◽  
Vol 47 (3) ◽  
pp. 778-794 ◽  
Author(s):  
K. A. Hilburn ◽  
F. J. Wentz

Abstract The Unified Microwave Ocean Retrieval Algorithm (UMORA) simultaneously retrieves sea surface temperature, surface wind speed, columnar water vapor, columnar cloud water, and surface rain rate from a variety of passive microwave radiometers including the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). The rain component of UMORA explicitly parameterizes the three physical processes governing passive microwave rain retrievals: the beamfilling effect, cloud and rainwater partitioning, and effective rain layer thickness. Rain retrievals from the previous version of UMORA disagreed among different sensors and were too high in the tropics. These issues have been fixed with more realistic rain column heights and proper modeling of saturation and footprint-resolution effects in the beamfilling correction. The purpose of this paper is to describe the rain algorithm and its recent improvements and to compare UMORA retrievals with Goddard Profiling Algorithm (GPROF) and Global Precipitation Climatology Project (GPCP) rain rates. On average, TMI retrievals from UMORA agree well with GPROF; however, large differences become apparent when the instantaneous retrievals are compared on a pixel-to-pixel basis. The differences are due to fundamental algorithm differences. For example, UMORA generally retrieves higher total liquid water, but GPROF retrieves a higher surface rain rate for a given amount of total liquid water because of differences in microphysical assumptions. Comparison of UMORA SSM/I retrievals with GPCP shows similar spatial patterns, but GPCP has higher global averages because of greater amounts of precipitation in the extratropics. UMORA and GPCP have similar linear trends over the period 1988–2005 with similar spatial patterns.


2007 ◽  
Vol 24 (6) ◽  
pp. 1131-1142 ◽  
Author(s):  
Anant Parekh ◽  
Rashmi Sharma ◽  
Abhijit Sarkar

A 2-yr (June 1999–June 2001) observation of ocean surface wind speed (SWS) and sea surface temperature (SST) derived from microwave radiometer measurements made by a multifrequency scanning microwave radiometer (MSMR) and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is compared with direct measurements by Indian Ocean buoys. Also, for the first time SWS and SST values of the same period obtained from 40-yr ECMWF Re-Analysis (ERA-40) have been evaluated with these buoy observations. The SWS and SST are shown to have standard deviations of 1.77 m s−1 and 0.60 K for TMI, 2.30 m s−1 and 2.0 K for MSMR, and 2.59 m s−1 and 0.68 K for ERA-40, respectively. Despite the fact that MSMR has a lower-frequency channel, larger values of bias and standard deviation (STD) are found compared to those of TMI. The performance of SST retrieval during the daytime is found to be better than that at nighttime. The analysis carried out for different seasons has raised an important question as to why one spaceborne instrument (TMI) yields retrievals with similar biases during both pre- and postmonsoon periods and the other (MSMR) yields drastically different results. The large bias at low wind speeds is believed to be due to the poorer sensitivity of microwave emissivity variations at low wind speeds. The extreme SWS case study (cyclonic condition) showed that satellite-retrieved SWS captured the trend and absolute magnitudes as reflected by in situ observations, while the model (ERA-40) failed to do so. This result has direct implications on the real-time application of satellite winds in monitoring extreme weather events.


2019 ◽  
Vol 100 (10) ◽  
pp. 2009-2023 ◽  
Author(s):  
Christopher Ruf ◽  
Shakeel Asharaf ◽  
Rajeswari Balasubramaniam ◽  
Scott Gleason ◽  
Timothy Lang ◽  
...  

AbstractThe NASA Cyclone Global Navigation Satellite System (CYGNSS) constellation of eight satellites was successfully launched into low Earth orbit on 15 December 2016. Each satellite carries a radar receiver that measures GPS signals scattered from the surface. Wind speed over the ocean is determined from distortions in the signal caused by wind-driven surface roughness. GPS operates at a sufficiently low frequency to allow for propagation through all precipitation, including the extreme rain rates present in the eyewall of tropical cyclones. The spacing and orbit of the satellites were chosen to optimize frequent sampling of tropical cyclones. In this study, we characterize the CYGNSS ocean surface wind speed measurements by their uncertainty, dynamic range, sensitivity to precipitation, spatial resolution, spatial and temporal sampling, and data latency. The current status of each of these properties is examined and potential future improvements are discussed. In addition, examples are given of current science investigations that make use of the data.


2019 ◽  
Vol 11 (23) ◽  
pp. 2747 ◽  
Author(s):  
Zhounan Dong ◽  
Shuanggen Jin

Spaceborne Global Navigation Satellite Systems-Reflectometry (GNSS-R) can estimate the geophysical parameters by receiving Earth’s surface reflected signals. The CYclone Global Navigation Satellite System (CYGNSS) mission with eight microsatellites launched by NASA in December 2016, which provides an unprecedented opportunity to rapidly acquire ocean surface wind speed globally. In this paper, a refined spaceborne GNSS-R sea surface wind speed retrieval algorithm is presented and validated with the ground surface reference wind speed from numerical weather prediction (NWP) and cross-calibrated multi-platform ocean surface wind vector analysis product (CCMP), respectively. The results show that when the wind speed was less than 20 m/s, the RMS of the GNSS-R retrieved wind could achieve 1.84 m/s in the case where the NWP winds were used as the ground truth winds, while the result was better than the NWP-based retrieved wind speed with an RMS of 1.68 m/s when the CCMP winds were used. The two sets of inversion results were further evaluated by the buoy winds, and the uncertainties from the NWP-derived and CCMP-derived model prediction wind speed were 1.91 m/s and 1.87 m/s, respectively. The accuracy of inversed wind speeds for different GNSS pseudo-random noise (PRN) satellites and types was also analyzed and presented, which showed similar for different PRN satellites and different types of satellites.


2017 ◽  
Vol 34 (8) ◽  
pp. 1837-1851 ◽  
Author(s):  
Daniel J. Cecil ◽  
Sayak K. Biswas

AbstractSurface wind speed retrievals have been generated and evaluated using Hurricane Imaging Radiometer (HIRAD) measurements from flights over Hurricane Joaquin, Hurricane Patricia, Hurricane Marty, and the remnants of Tropical Storm Erika—all in 2015. Procedures are described here for producing maps of brightness temperature, which are subsequently used for retrievals of surface wind speed and rain rate across a ~50-km-wide swath for each flight leg. An iterative retrieval approach has been developed to take advantage of HIRAD’s measurement characteristics. Validation of the wind speed retrievals has been conducted, using 636 dropsondes released from the same WB-57 high-altitude aircraft carrying HIRAD during the Tropical Cyclone Intensity (TCI) experiment. The HIRAD wind speed retrievals exhibit very small bias relative to the dropsondes, for winds of tropical storm strength (17.5 m s−1) or greater. HIRAD has reduced sensitivity to winds weaker than tropical storm strength and a small positive bias (~2 m s−1). Two flights with predominantly weak winds according to the dropsondes have abnormally large errors from HIRAD and large positive biases. From the other flights, the root-mean-square differences between HIRAD and the dropsonde winds are 4.1 m s−1 (33%) for winds below tropical storm strength, 5.6 m s−1 (25%) for tropical storm–strength winds, and 6.3 m s−1 (16%) for hurricane-strength winds. The mean absolute differences for those three categories are 3.2 m s−1 (25%), 4.3 m s−1 (19%), and 4.8 m s−1 (12%), respectively, with a bias near zero for winds of tropical storm and hurricane strength.


Sign in / Sign up

Export Citation Format

Share Document