scholarly journals Improvements of Rain/No-Rain Classification Methods for Microwave Radiometer over Coasts by Dynamic Surface-Type Classification

2016 ◽  
Vol 33 (6) ◽  
pp. 1257-1270 ◽  
Author(s):  
Tomoaki Mega ◽  
Shoichi Shige

AbstractThe rain/no-rain classification for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) fails to detect rain over coasts, where the microwave footprint encompasses a mixture of radiometrically cold ocean and radiometrically warm land. A static land–ocean–coast mask is used to determine the surface type of each satellite footprint. The coast mask is conservatively wide to account for the largest footprints, preventing use of the more appropriate ocean or land algorithm for coastal regions.The purpose of this paper is to develop a classification whereby the smallest region possible is defined as coast. In this endeavor, two major improvements are applied to the land–ocean–coast classification. First, the surface classification based on microwave footprints of the high frequency actually used in rain detection is employed. Second, the footprint area of the surface classification is established using an effective field-of-view size and scan geometry of the TMI. These improvements are applied to the Global Satellite Mapping of Precipitation TMI algorithm. The classification result is validated using the TRMM precipitation radar. The validation shows that these improvements lead to better rain detection in the coastal region.

2008 ◽  
Vol 47 (11) ◽  
pp. 3016-3029 ◽  
Author(s):  
Shinta Seto ◽  
Takuji Kubota ◽  
Nobuhiro Takahashi ◽  
Toshio Iguchi ◽  
Taikan Oki

Abstract Seto et al. developed rain/no-rain classification (RNC) methods over land for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). In this study, the methods are modified for application to other microwave radiometers. The previous methods match TMI observations with TRMM precipitation radar (PR) observations, classify the TMI pixels into rain pixels and no-rain pixels, and then statistically summarize the observed brightness temperature at the no-rain pixels into a land surface brightness temperature database. In the modified methods, the probability distribution of brightness temperature under no-rain conditions is derived from unclassified TMI pixels without the use of PR. A test with the TMI shows that the modified (PR independent) methods are better than the RNC method developed for the Goddard profiling algorithm (GPROF; the standard algorithm for the TMI) while they are slightly poorer than corresponding previous (PR dependent) methods. M2d, one of the PR-independent methods, is applied to observations from the Advanced Microwave Scanning Radiometer for Earth Observing Satellite (AMSR-E), is evaluated for a matchup case with PR, and is evaluated for 1 yr with a rain gauge dataset in Japan. M2d is incorporated into a retrieval algorithm developed by the Global Satellite Mapping of Precipitation project to be applied for the AMSR-E. In latitudes above 30°N, the rain-rate retrieval is compared with a rain gauge dataset by the Global Precipitation Climatology Center. Without a snow mask, a large amount of false rainfall due to snow contamination occurs. Therefore, a simple snow mask using the 23.8-GHz channel is applied and the threshold of the mask is optimized. Between 30° and 60°N, the optimized snow mask forces the miss of an estimated 10% of the total rainfall.


2013 ◽  
Vol 52 (1) ◽  
pp. 242-254 ◽  
Author(s):  
Shoichi Shige ◽  
Satoshi Kida ◽  
Hiroki Ashiwake ◽  
Takuji Kubota ◽  
Kazumasa Aonashi

AbstractHeavy rainfall associated with shallow orographic rainfall systems has been underestimated by passive microwave radiometer algorithms owing to weak ice scattering signatures. The authors improve the performance of estimates made using a passive microwave radiometer algorithm, the Global Satellite Mapping of Precipitation (GSMaP) algorithm, from data obtained by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) for orographic heavy rainfall. An orographic/nonorographic rainfall classification scheme is developed on the basis of orographically forced upward vertical motion and the convergence of surface moisture flux estimated from ancillary data. Lookup tables derived from orographic precipitation profiles are used to estimate rainfall for an orographic rainfall pixel, whereas those derived from original precipitation profiles are used to estimate rainfall for a nonorographic rainfall pixel. Rainfall estimates made using the revised GSMaP algorithm are in better agreement with estimates from data obtained by the radar on the TRMM satellite and by gauge-calibrated ground radars than are estimates made using the original GSMaP algorithm.


2018 ◽  
Vol 35 (12) ◽  
pp. 2339-2358 ◽  
Author(s):  
Anil Deo ◽  
S. Joseph Munchak ◽  
Kevin J. E. Walsh

AbstractThis study cross validates the radar reflectivity Z; the rainfall drop size distribution parameter (median volume diameter Do); and the rainfall rate R estimated from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR), a combined PR and TRMM Microwave Imager (TMI) algorithm (COM), and a C-band dual-polarized ground radar (GR) for TRMM overpasses during the passage of tropical cyclone (TC) and non-TC events over Darwin, Australia. Two overpass events during the passage of TC Carlos and 11 non-TC overpass events are used in this study, and the GR is taken as the reference. It is shown that the correspondence is dependent on the precipitation type whereby events with more (less) stratiform rainfall usually have a positive (negative) bias in the reflectivity and the rainfall rate, whereas in the Do the bias is generally positive but small (large). The COM reflectivity estimates are similar to the PR, but it has a smaller bias in the Do for most of the greater stratiform events. This suggests that combining the TMI with the PR adjusts the Do toward the “correct” direction if the GR is taken as the reference. Moreover, the association between the TRMM estimates and the GR for the two TC events, which are highly stratiform in nature, is similar to that observed for the highly stratiform non-TC events (there is no significant difference), but it differs considerably from that observed for the majority of the highly convective non-TC events.


2005 ◽  
Vol 22 (7) ◽  
pp. 909-929 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Christian D. Kummerow

Abstract A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measurement space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is expected to refine the a priori rain profile database and error models for use by parametric passive microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future TRMM algorithms.


2007 ◽  
Vol 24 (9) ◽  
pp. 1598-1607 ◽  
Author(s):  
Jeremy D. DeMoss ◽  
Kenneth P. Bowman

Abstract During the first three-and-a-half years of the Tropical Rainfall Measuring Mission (TRMM), the TRMM satellite operated at a nominal altitude of 350 km. To reduce drag, save maneuvering fuel, and prolong the mission lifetime, the orbit was boosted to 403 km in August 2001. The change in orbit altitude produced small changes in a wide range of observing parameters, including field-of-view size and viewing angles. Due to natural variability in rainfall and sampling error, it is not possible to evaluate possible changes in rainfall estimates from the satellite data alone. Changes in TRMM Microwave Imager (TMI) and the precipitation radar (PR) precipitation observations due to the orbit boost are estimated by comparing them with surface rain gauges on ocean buoys operated by the NOAA/Pacific Marine Environment Laboratory (PMEL). For each rain gauge, the bias between the satellite and the gauge for pre- and postboost time periods is computed. For the TMI, the satellite is biased ∼12% low relative to the gauges during the preboost period and ∼1% low during the postboost period. The mean change in bias relative to the gauges is approximately 0.4 mm day−1. The change in TMI bias is rain-rate-dependent, with larger changes in areas with higher mean precipitation rates. The PR is biased significantly low relative to the gauges during both boost periods, but the change in bias from the pre- to postboost period is not statistically significant.


2016 ◽  
Vol 33 (7) ◽  
pp. 1539-1556 ◽  
Author(s):  
Paula J. Brown ◽  
Christian D. Kummerow ◽  
David L. Randel

AbstractThe Goddard profiling algorithm (GPROF) is an operational passive microwave retrieval that uses a Bayesian scheme to estimate rainfall. GPROF 2014 retrieves rainfall and hydrometeor vertical profile information based upon a database of profiles constructed to be simultaneously consistent with Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI) observations. A small number of tropical cyclones are in the current database constructed from one year of TRMM data, resulting in the retrieval performing relatively poorly for these systems, particularly for the highest rain rates. To address this deficiency, a new database focusing specifically on hurricanes but consisting of 9 years of TRMM data is created. The new database and retrieval procedure for TMI and GMI is called Hurricane GPROF. An initial assessment of seven tropical cyclones shows that Hurricane GPROF provides a better estimate of hurricane rain rates than GPROF 2014. Hurricane GPROF rain-rate errors relative to the PR are reduced by 20% compared to GPROF, with improvements in the lowest and highest rain rates especially. Vertical profile retrievals for four hydrometeors are also enhanced, as error is reduced by 30% compared to the GPROF retrieval, relative to PR estimates. When compared to the full database of tropical cyclones, Hurricane GPROF improves the RMSE and MAE of rain-rate estimates over those from GPROF by about 22% and 27%, respectively. Similar improvements are also seen in the overall rain-rate bias for hurricanes in the database, which is reduced from 0.20 to −0.06 mm h−1.


2006 ◽  
Vol 45 (3) ◽  
pp. 455-466 ◽  
Author(s):  
Nicolas Viltard ◽  
Corinne Burlaud ◽  
Christian D. Kummerow

Abstract This study focuses on improving the retrieval of rain from measured microwave brightness temperatures and the capability of the retrieved field to represent the mesoscale structure of a small intense hurricane. For this study, a database is constructed from collocated Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and the TRMM Microwave Imager (TMI) data resulting in about 50 000 brightness temperature vectors associated with their corresponding rain-rate profiles. The database is then divided in two: a retrieval database of about 35 000 rain profiles and a test database of about 25 000 rain profiles. Although in principle this approach is used to build a database over both land and ocean, the results presented here are only given for ocean surfaces, for which the conditions for the retrieval are optimal. An algorithm is built using the retrieval database. This algorithm is then used on the test database, and results show that the error can be constrained to reasonable levels for most of the observed rain ranges. The relative error is nonetheless sensitive to the rain rate, with maximum errors at the low and high ends of the rain intensities (+60% and −30%, respectively) and a minimum error between 1 and 7 mm h−1. The retrieval method is optimized to exhibit a low total bias for climatological purposes and thus shows a high standard deviation on point-to-point comparisons. The algorithm is applied to the case of Hurricane Bret (1999). The retrieved rain field is analyzed in terms of structure and intensity and is then compared with the TRMM PR original rain field. The results show that the mesoscale structures are indeed well reproduced even if the retrieved rain misses the highest peaks of precipitation. Nevertheless, the mesoscale asymmetries are well reproduced and the maximum rain is found in the correct quadrant. Once again, the total bias is low, which allows for future calculation of the heat sources/sinks associated with precipitation production and evaporation.


2008 ◽  
Vol 25 (7) ◽  
pp. 1228-1237
Author(s):  
Tufa Dinku ◽  
Emmanouil N. Anagnostou

Abstract Seasonal differences in the calibration of overland passive microwave rain retrieval are investigated using Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR). Four geographic regions from southern Africa, South Asia, the Amazon basin, and the southeastern United States are selected. Three seasons are compared for each region. Two scenarios of algorithm calibration are considered. In the first, the parameter sets are derived by calibrating the TMI algorithm with PR in each season. In the second scenario, common parameter sets are derived from the combined dataset of all three seasons. The parameter sets from both scenarios are then applied to the validation dataset of each season to determine the effect of seasonal calibration. Furthermore, calibration parameters from one season are also applied to another season, and results are compared against those derived using the season’s own parameters. Appreciable seasonal differences are observed for the U.S. region, while there are no significant differences between using individual seasonal calibration and the all-season calibration for the other regions. However, using one season’s parameter set to retrieve rainfall for another season is associated with increased uncertainty. It is also shown that the performance of the retrieval varies by season.


2005 ◽  
Vol 22 (5) ◽  
pp. 497-512 ◽  
Author(s):  
Jeffrey R. McCollum ◽  
Ralph R. Ferraro

Abstract The microwave coastal rain identification procedure that has been used by NASA for over 10 yr, and also more recently by NOAA, for different instruments beginning with the Special Sensor Microwave Imager (SSM/I), is updated for use with Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Advanced Microwave Scanning Radiometer (AMSR)-[Earth Observing System (EOS)] E microwave data. Since the development of the SSM/I algorithm, a wealth of both space-based and ground-based radar-rainfall estimates have become available, and here some of these data are used with collocated TMI and AMSR-E data to improve the estimation of coastal rain areas from microwave data. Two major improvements are made. The first involves finding the conditions where positive rain rates should be estimated rather than leaving the areas without estimates as in the previous algorithm. The second is a modification to the final step of the rain identification method; previously, a straight brightness temperature cutoff was used, but this is modified to a polarization-corrected temperature criterion. These modifications are made for the TRMM version 6 product release and the third (1 September) release of AMSR-E products to the public, both in 2004. The modifications are slightly different for each of these two sensors.


Sign in / Sign up

Export Citation Format

Share Document