scholarly journals Tropical Cyclone Wind Speed Retrieval from Dual-Polarization Sentinel-1 EW Mode Products

2020 ◽  
Vol 37 (9) ◽  
pp. 1713-1724
Author(s):  
Yuan Gao ◽  
Changlong Guan ◽  
Jian Sun ◽  
Lian Xie

AbstractRecent studies indicate that the cross-polarization synthetic aperture radar (SAR) images have the ability of retrieving high wind speed on ocean surface without wind direction input. This study presents a new approach for tropical cyclone (TC) wind speed retrieval utilizing thermal-noise-removed Sentinel-1 dual-polarization (VV + VH) Extra-Wide Swath (EW) Mode products. Based on 20 images of 9 TCs observed in the 2016 and 2018 and SAR-collocated European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation reanalysis (ERA5) data and the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division’s (HRD) Real-time Hurricane Wind Analysis System (H*Wind) data, a subswath-based geophysical model function (GMF) Sentinel-1 EW Mode Wind Speed Retrieval Model after Noise Removal (S1EW.NR) is developed and validated statistically. TC wind speed is retrieved by using the proposed GMF and the C-band model 5.N (CMOD5.N). The results show that the wind speeds retrieved by the S1EW.NR model are in good agreement with wind references up to 31 m s−1. The correlation coefficient, bias, and standard deviation between the retrieval results and reference wind speeds are 0.74, −0.11, and 3.54 m s−1, respectively. Comparison of the wind speeds retrieved from both channels suggests that the cross-polarized signal is more suitable for high–wind speed retrieval, indicating the promising capability of cross-polarization SAR for TC monitoring.

2019 ◽  
Vol 11 (23) ◽  
pp. 2837 ◽  
Author(s):  
Peng Yu ◽  
Johnny A. Johannessen ◽  
Xiao-Hai Yan ◽  
Xupu Geng ◽  
Xiaojing Zhong ◽  
...  

Monitoring the intensity and size of a tropical cyclone (TC) is a challenging task, and is important for reducing losses of lives and property. In this study, we use Idai, one of the deadliest TCs on record in the Southern Hemisphere, as an example. Dual-polarization synthetic aperture radar (SAR) measurements from the Copernicus Sentinel-1 mission are used to examine the TC structure and intensity. The wind speed is estimated and compared using well known C-band model functions based on calibrated cross-polarization SAR images. Because of the relatively high noise floor of the Sentinel-1 data, wind speeds under 20 m/s from cross-polarization models are ignored and replaced by low to moderate wind speeds retrieved from co-polarization radar signals. Wind fields retrieved from the co- and cross-polarization model results are then merged together to estimate the TC size and the TC fullness scale, a concept related to the wind structure of a storm. Idai has a very strong wind speed and fullness structure, indicating that it was indeed a very intense storm. The approach demonstrates that open and freely available Sentinel-1 SAR data is a unique dataset to estimate the potential destructiveness of similar natural disasters like Idai.


2013 ◽  
Vol 13 (5) ◽  
pp. 13285-13322 ◽  
Author(s):  
T. G. Bell ◽  
W. De Bruyn ◽  
S. D. Miller ◽  
B. Ward ◽  
K. Christensen ◽  
...  

Abstract. Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s−1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.


2013 ◽  
Vol 13 (21) ◽  
pp. 11073-11087 ◽  
Author(s):  
T. G. Bell ◽  
W. De Bruyn ◽  
S. D. Miller ◽  
B. Ward ◽  
K. H. Christensen ◽  
...  

Abstract. Shipboard measurements of eddy covariance dimethylsulfide (DMS) air–sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s−1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air–sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air–sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.


2005 ◽  
Vol 18 (18) ◽  
pp. 3713-3725 ◽  
Author(s):  
G. W. K. Moore ◽  
I. A. Renfrew

Abstract The high topography of Greenland results in a number of orographically induced high wind speed flows along its coast that are of interest from both a severe weather and climate perspective. Here the surface wind field dataset from the NASA–JPL SeaWinds scatterometer on board the Quick Scatterometer (QuikSCAT) satellite is used to develop a wintertime climatology of these flows. The high spatial resolution and the twice-daily sampling of the SeaWinds instrument allows for a much more detailed view of the surface winds around Greenland than has been previously possible. Three phenomena stand out as the most distinctive features of the surface wind field during the winter months: the previously identified tip jets and reverse tip jets, as well as the hitherto unrecognized barrier flows along its southeast coast in the vicinity of the Denmark Strait. Peak surface wind speeds associated with these phenomena can be as large as 50 m s−1 with winds over 25 m s−1 occurring approximately 10%–15% of the time at each location. A compositing technique is used to show that each type of flow is the result of an interaction between a synoptic-scale parent cyclone and the high topography of Greenland. In keeping with previous work, it is argued that tip jets are caused by a combination of conservation of the Bernoulli function during orographic descent and acceleration due to flow splitting as stable air passes around Cape Farewell, while barrier winds are a geostrophic response to stable air being forced against high topography. It is proposed that reverse tip jets occur when barrier winds reach the end of the topographic barrier and move from a geostrophic to a gradient wind balance, becoming supergeostrophic as a result of their anticyclonic curvature.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3392
Author(s):  
Mingxing Li ◽  
Ruifeng Kan ◽  
Yabai He ◽  
Jianguo Liu ◽  
Zhenyu Xu ◽  
...  

We report the development of a laser gas analyzer that measures gas concentrations at a data rate of 100 Hz. This fast data rate helps eddy covariance calculations for gas fluxes in turbulent high wind speed environments. The laser gas analyzer is based on derivative laser absorption spectroscopy and set for measurements of water vapor (H2O, at wavelength ~1392 nm) and carbon dioxide (CO2, at ~2004 nm). This instrument, in combination with an ultrasonic anemometer, has been tested experimentally in both marine and terrestrial environments. First, we compared the accuracy of results between the laser gas analyzer and a high-quality commercial instrument with a max data rate of 20 Hz. We then analyzed and compared the correlation of H2O flux results at data rates of 100 Hz and 20 Hz in both high and low wind speeds to verify the contribution of high frequency components. The measurement results show that the contribution of 100 Hz data rate to flux calculations is about 11% compared to that measured with 20 Hz data rate, in an environment with wind speed of ~10 m/s. Therefore, it shows that the laser gas analyzer with high detection frequency is more suitable for measurements in high wind speed environments.


2018 ◽  
Vol 123 (8) ◽  
pp. 5842-5855 ◽  
Author(s):  
Yu. Troitskaya ◽  
V. Abramov ◽  
G. Baidakov ◽  
O. Ermakova ◽  
E. Zuikova ◽  
...  

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Davide Astolfi ◽  
Francesco Castellani ◽  
Andrea Lombardi ◽  
Ludovico Terzi

The financial sustainability and the profitability of wind farms strongly depend on the efficiency of the conversion of wind kinetic energy. This motivates further research about the improvement of wind turbine power curve. If the site is characterized by a considerable occurrence of very high wind speeds, it can become particularly profitable to update the power curve management. This is commonly done by raising the cut-out velocity and the high wind speed cut-in regulating the hysteresis logic. Doing this, on one side, the wind turbine possibly undergoes strong vibration and loads. On the other side, the energy improvement is almost certain and the point is quantifying precisely its magnitude. In this work, the test case of an onshore wind farm in Italy is studied, featuring 17 2.3 MW wind turbines. Through the analysis of supervisory control and data acquisition (SCADA) data, the energy improvement from the extension of the power curve in the high wind speed region is simulated and measured. This could be useful for wind farm owners evaluating the realistic profitability of the installation of the power curve upgrade on their wind turbines. Furthermore, the present work is useful for the analysis of wind turbine behavior under extremely stressing load conditions.


Author(s):  
Hiroyuki MIYAUCHI ◽  
Nobuo KATO ◽  
Hirokazu ICHIKAWA ◽  
Takanori SASAKI ◽  
Kyoji TANAKA

1979 ◽  
Vol 57 (10) ◽  
pp. 1985-1997 ◽  
Author(s):  
Kerwin J. Finley

Numbers of ringed seals hauled out on the ice began to increase in early June. Numbers on the ice were highest from 0900 to 1500 hours Central Standard Time and lowest (average 40–50% of peak) in early morning. Seals commonly remained on the ice for several hours, and occasionally (during calm weather) for > 48 h. Numbers on the ice were reduced on windy days and possibly also on unusually warm, bright and calm days. Seals tended to face away from the wind (particularly with high wind speed) and oriented broadside to the sun. Seals usually occurred singly (60–70% of all groups) at their holes.Numbers of seals hauled out at Freemans Cove remained relatively constant during June (maximum density 4.86/km2), whereas at Aston Bay numbers increased dramatically to a maximum density of 10.44/km2 in late June. The increase was thought to be due to an influx of seals abandoning unstable ice. The density of seal holes at Freemans Cove (5.92/km2) was much higher than at Aston Bay (2.73/km2). The ratio of holes to the maximum numbers of seals (1.12:1) at Freemans Cove represents a first estimate of this relationship in an apparently stable population.


2021 ◽  
Vol 9 (3) ◽  
pp. 246
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Xiaoyong Li ◽  
Kaijun Ren ◽  
Hongze Leng

A wave state related sea surface roughness parameterization scheme that takes into account the impact of sea foam is proposed in this study. Using eight observational datasets, the performances of two most widely used wave state related parameterizations are examined under various wave conditions. Based on the different performances of two wave state related parameterizations under different wave state, and by introducing the effect of sea foam, a new sea surface roughness parameterization suitable for low to extreme wind conditions is proposed. The behaviors of drag coefficient predicted by the proposed parameterization match the field and laboratory measurements well. It is shown that the drag coefficient increases with the increasing wind speed under low and moderate wind speed conditions, and then decreases with increasing wind speed, due to the effect of sea foam under high wind speed conditions. The maximum values of the drag coefficient are reached when the 10 m wind speeds are in the range of 30–35 m/s.


Sign in / Sign up

Export Citation Format

Share Document