scholarly journals Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

2013 ◽  
Vol 13 (5) ◽  
pp. 13285-13322 ◽  
Author(s):  
T. G. Bell ◽  
W. De Bruyn ◽  
S. D. Miller ◽  
B. Ward ◽  
K. Christensen ◽  
...  

Abstract. Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s−1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.


2013 ◽  
Vol 13 (21) ◽  
pp. 11073-11087 ◽  
Author(s):  
T. G. Bell ◽  
W. De Bruyn ◽  
S. D. Miller ◽  
B. Ward ◽  
K. H. Christensen ◽  
...  

Abstract. Shipboard measurements of eddy covariance dimethylsulfide (DMS) air–sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s−1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air–sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air–sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.



Author(s):  
Wengang Mao ◽  
Igor Rychlik

In order to evaluate potential benefits of new green shipping concepts that utilize wind power as auxiliary propulsion in ships or of offshore wind energy harvest, it is essential to have reliable wind speed statistics. A new method to find parameters in the Weibull distribution is given. It can be used either at a fixed offshore position or along arbitrary ship routes. The method employs a spatio-temporal transformed Gaussian model for wind speed variability. The model was fitted to 10 years’ ERA-Interim reanalysis data of wind speed. The proposed method to derive Weibull distribution is validated using wind speeds measured on-board by vessels sailing in the North Atlantic and the west region of the Mediterranean Sea. For the westbound voyages in the North Atlantic, the proposed method gives a good approximation of the observed wind distribution along those ship routes. For the eastbound voyages, significant difference is found between the observed wind distribution and that approximated by the proposed method. The suspected reason is attributed to the ship routing decisions of masters and software. Hence, models that consider only the wind climate description need to be supplemented with a method to take into account the effect of wind-aware routing plan.



2017 ◽  
Author(s):  
Thomas G. Bell ◽  
Sebastian Landwehr ◽  
Scott D. Miller ◽  
Warren J. de Bruyn ◽  
Adrian Callaghan ◽  
...  

Abstract. Simultaneous air/sea fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2) were measured during a summertime North Atlantic cruise in 2011. This dataset reveals significant differences between the gas transfer velocities of these two gases (Δkw) over a range of wind speeds up to 21 m  s−1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with Δkw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Δkw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction under-predict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated exchange. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas exchange.



2021 ◽  
Author(s):  
Alvise Aranyossy ◽  
Sebastian Brune ◽  
Lara Hellmich ◽  
Johanna Baehr

<p>We analyse the connections between the wintertime North Atlantic Oscillation (NAO), the eddy-driven jet stream with the mid-latitude cyclonic activity over the North Atlantic and Europe. We investigate, through the comparison against ECMWF ERA5 and hindcast simulations from the Max Planck Institute Earth System Model (MPI-ESM), the potential for enhancement of the seasonal prediction skill of the Eddy Kinetic Energy (EKE) by accounting for the connections between large-scale climate and the regional cyclonic activity. Our analysis focuses on the wintertime months (December-March) in the 1979-2019 period, with seasonal predictions initialized every November 1st. We calculate EKE from wind speeds at 250 hPa, which we use as a proxy for cyclonic activity. The zonal and meridional wind speeds are bandpass filtered with a cut-off at 3-10 days to fit with the average lifespan of mid-latitude cyclones. </p><p>Preliminary results suggest that in ERA5, major positive anomalies in EKE, both in quantity and duration, are correlated with a northern position of the jet stream and a positive phase of the NAO. Apparently, a deepened Icelandic low-pressure system offers favourable conditions for mid-latitude cyclones in terms of growth and average lifespan. In contrast, negative anomalies in EKE over the North Atlantic and Central Europe are associated with a more equatorward jet stream, these are also linked to a negative phase of the NAO.  Thus, in ERA5, the eddy-driven jet stream and the NAO play a significant role in the spatial and temporal distribution of wintertime mid-latitude cyclonic activity over the North Atlantic and Europe. We extend this connection to the MPI-ESM hindcast simulations and present an analysis of their predictive skill of EKE for wintertime months.</p>



2015 ◽  
Vol 12 (6) ◽  
pp. 2591-2616
Author(s):  
I. Wróbel ◽  
J. Piskozub

Abstract. The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, understanding the uncertainties the net flux into the ocean sink is crucial for understanding the global carbon cycle. One of the sources of uncertainty is the parameterization of CO2 gas transfer velocity. We used a recently developed software tool, FluxEngine, to calculate monthly net carbon air–sea flux for the extratropical North Atlantic, European Arctic as well as global values (or comparison) using several available parameterizations of gas transfer velocity of different dependence of wind speed, both quadratic and cubic. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic, a large sink of CO2 and a region with good measurement coverage, characterized by strong winds. We show that this uncertainty is smaller in the North Atlantic and in the Arctic than globally, within 5 % in the North Atlantic and 4 % in the European Arctic, comparing to 9 % for the World Ocean when restricted to functions with quadratic wind dependence and respectively 42, 40 and 67 % for all studied parameterizations. We propose an explanation of this smaller uncertainty due to the combination of higher than global average wind speeds in the North Atlantic and lack of seasonal changes in the flux direction in most of the region. We also compare the available pCO2 climatologies (Takahashi and SOCAT) pCO2 discrepancy in annual flux values of 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal flux changes in the Arctic have inverse seasonal change in both climatologies, caused most probably by insufficient data coverage, especially in winter.



2021 ◽  
Author(s):  
Terhi K. Laurila ◽  
Victoria A. Sinclair ◽  
Hilppa Gregow

<p>The knowledge of long-term climate and variability of near-surface wind speeds is essential and widely used among meteorologists, climate scientists and in industries such as wind energy and forestry. The new high-resolution ERA5 reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) will likely be used as a reference in future climate projections and in many wind-related applications. Hence, it is important to know what is the mean climate and variability of wind speeds in ERA5.</p><p>We present the monthly 10-m wind speed climate and decadal variability in the North Atlantic and Europe during the 40-year period (1979-2018) based on ERA5. In addition, we examine temporal time series and possible trends in three locations: the central North Atlantic, Finland and Iberian Peninsula. Moreover, we investigate what are the physical reasons for the decadal changes in 10-m wind speeds.</p><p>The 40-year mean and the 98th percentile wind speeds show a distinct contrast between land and sea with the strongest winds over the ocean and a seasonal variation with the strongest winds during winter time. The winds have the highest values and variabilities associated with storm tracks and local wind phenomena such as the mistral. To investigate the extremeness of the winds, we defined an extreme find factor (EWF) which is the ratio between the 98th percentile and mean wind speeds. The EWF is higher in southern Europe than in northern Europe during all months. Mostly no statistically significant linear trends of 10-m wind speeds were found in the 40-year period in the three locations and the annual and decadal variability was large.</p><p>The windiest decade in northern Europe was the 1990s and in southern Europe the 1980s and 2010s. The decadal changes in 10-m wind speeds were largely explained by the position of the jet stream and storm tracks and the strength of the north-south pressure gradient over the North Atlantic. In addition, we investigated the correlation between the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO) in the three locations. The NAO has a positive correlation in the central North Atlantic and Finland and a negative correlation in Iberian Peninsula. The AMO correlates moderately with the winds in the central North Atlantic but no correlation was found in Finland or the Iberian Peninsula. Overall, our study highlights that rather than just using long-term linear trends in wind speeds it is more informative to consider inter-annual or decadal variability.</p>



2014 ◽  
Vol 147 ◽  
pp. 89-98 ◽  
Author(s):  
Elizaveta Zabolotskikh ◽  
Leonid Mitnik ◽  
Bertrand Chapron


2017 ◽  
Vol 122 (10) ◽  
pp. 8034-8062 ◽  
Author(s):  
B. W. Blomquist ◽  
S. E. Brumer ◽  
C. W. Fairall ◽  
B. J. Huebert ◽  
C. J. Zappa ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document