scholarly journals Quantitative Precipitation Estimation using Overlapped Area in Radar Network

2017 ◽  
Vol 19 (1) ◽  
pp. 112-121
Author(s):  
Jeongho Choi ◽  
Myoungsun Han ◽  
Chulsang Yoo ◽  
Jiho Lee
2020 ◽  
Vol 5 (5) ◽  
pp. 36-50
Author(s):  
Chiho Kimpara ◽  
Michihiko Tonouchi ◽  
Bui Thi Khanh Hoa ◽  
Nguyen Viet Hung ◽  
Nguyen Minh Cuong ◽  
...  

Geomatics ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 347-368
Author(s):  
Tomeu Rigo ◽  
Maria Carmen Llasat ◽  
Laura Esbrí

The single polarization C-Band weather radar network of the Meteorological Service of Catalonia covers the entire region (32,000 km2), which allows it to apply a series of corrections that improve preliminary estimations of the rainfall field (hourly and daily). In addition, an automatic re-processing using automatic weather stations helps to incorporate ground-based information. The last process of the quantitative precipitation estimation (QPE) is running the end-product again eight days later, when the data have been reviewed and corrected in the case of detecting anomalies in the radar or gauge data. These corrections are applied operationally, with the fields generated and stored automatically. The QPE fields are generated in the GeoTIFF format, allowing easy use with multiple applications and simplifying processes such as quality control. In this way, the analysis of a 10 year period of GeoTIFF QPE daily data compared with ground rainfall values is introduced. The results help to understand different points regarding the functioning of the network such as the dependance on the type of precipitation and the seasonality. In addition, the description of a heavy rainfall episode (22 October 2019) shows the variations and improvements in the different products. The main conclusions refer to how using GeoTIFF combined with point data (rain gauges), it is possible to ensure simple but effective quality control of an operational radar network.


2019 ◽  
Vol 11 (12) ◽  
pp. 1479 ◽  
Author(s):  
Ji ◽  
Chen ◽  
Li ◽  
Chen ◽  
Xiao ◽  
...  

Fourteen-month precipitation measurements from a second-generation PARSIVEL disdrometer deployed in Beijing, northern China, were analyzed to investigate the microphysical structure of raindrop size distribution and its implications on polarimetric radar applications. Rainfall types are classified and analyzed in the domain of median volume diameter D0 and the normalized intercept parameter Nw. The separation line between convective and stratiform rain is almost equivalent to rain rate at 8.6 mm h–1 and radar reflectivity at 36.8 dBZ. Convective rain in Beijing shows distinct seasonal variations in log10Nw–D0 domain. X-band dual-polarization variables are simulated using the T-matrix method to derive radar-based quantitative precipitation estimation (QPE) estimators, and rainfall products at hourly scale are evaluated for four radar QPE estimators using collocated but independent rain gauge observations. This study also combines the advantages of individual estimators based on the thresholds on polarimetric variables. Results show that the blended QPE estimator has better performance than others. The rainfall microphysical analysis presented in this study is expected to facilitate the development of a high-resolution X-band radar network for urban QPE applications.


Author(s):  
Ju-Yu Chen ◽  
Silke Trömel ◽  
Alexander Ryzhkov ◽  
Clemens Simmer

AbstractRecent advances demonstrate the benefits of radar-derived specific attenuation at horizontal polarization (AH) for quantitative precipitation estimation (QPE) at S and X band. To date the methodology has, however, not been adapted for the widespread European C-band radars such as installed in the network of the German Meteorological Service (DWD, Deutscher Wetterdienst). Simulations based on a large dataset of drop size distributions (DSDs) measured over Germany are performed to investigate the DSD dependencies of the attenuation parameter αH for the AH estimates. The normalized raindrop concentration (Nw) and the change of differential reflectivity (ZDR) with reflectivity at horizontal polarization (ZH) are used to categorize radar observations into regimes for which scan-wise optimized αH values are derived. For heavier continental rain with ZH > 40 dBZ, the AH-based rainfall retrieval R(AH) is combined with a rainfall estimator using a substitute of specific differential phase (). We also assess the performance of retrievals based on specific attenuation at vertical polarization (AV). Finally, the regime-adapted hybrid QPE algorithms are applied to four convective cases and one stratiform case from 2017 to 2019, and compared to DWD’s operational RAdar-OnLine-ANeichung (RADOLAN) RW rainfall product, which is based on Zh only but adjusted to rain gauge measurements. For the convective cases, our hybrid retrievals outperform the traditional R(Zh) and pure R(AH/V) retrievals with fixed αH/V values when evaluated with gauge measurements and outperform RW when evaluated by disdrometer measurements. Potential improvements using ray-wise αH/V and segment-wise applications of the ZPHI method along the radials are discussed.


Author(s):  
Nawal Husnoo ◽  
Timothy Darlington ◽  
Sebastián Torres ◽  
David Warde

AbstractIn this work, we present a new Quantitative-Precipitation-Estimation (QPE) quality-control (QC) algorithm for the UK weather radar network. The real-time adaptive algorithm uses a neural network (NN) to select data from the lowest useable elevation scan to optimize the combined performance of two other radar data correction algorithms: ground clutter mitigation (using CLEAN-AP) and vertical profile of reflectivity (VPR) correction. The NN is trained using 3D tiles of observed uncontaminated weather signals that are systematically combined with ground-clutter signals collected under dry weather conditions. This approach provides a way to simulate radar signals with a wide range of clutter contamination conditions and with realistic spatial structures while providing the uncontaminated “truth” with respect to which the performance of the QC algorithm can be measured. An evaluation of QPE products obtained with the proposed QC algorithm demonstrates superior performance as compared to those obtained with the QC algorithm currently used in operations. Similar improvements are also illustrated using radar observations from two periods of prolonged precipitation, showing a better balance between overestimation errors from using clutter-contaminated low-elevation radar data and VPR-induced errors from using high-elevation radar data.


2010 ◽  
Vol 27 (10) ◽  
pp. 1665-1676 ◽  
Author(s):  
Yanting Wang ◽  
V. Chandrasekar

Abstract This paper presents the sensing aspects and performance evaluation of the quantitative precipitation estimation (QPE) system in an X-band dual-polarization radar network developed by the Collaborative Adaptive Sensing of the Atmosphere (CASA) Engineering Research Center. CASA’s technology enables precipitation observation close to the ground and QPE is one of the important applications. With expanding urbanization all over the world, vulnerability to floods has increased from intense rainfall such as urban flash floods. The QPE products that are derived at high spatiotemporal resolution, which is enabled by the deployment of a dense radar network, have the potential to improve the prediction of flash-flooding threats when coupled with hydrological models. Derivation of QPE from radar observations is a challenging process, in which the use of dual-polarization radar variables is advantageous. At X band, the specific differential propagation phase (Kdp) between the orthogonal linear polarization states is particularly appealing. The Kdp field is robustly acquired using an adaptive estimation method, and a simple R(Kdp) relation is used to perform precipitation estimation in this X-band radar network. Radar observations and QPE from multiyear field experiments are used to demonstrate the performance of rainfall estimation from the single-parameter Kdp-based rainfall product. The operational feasibility of radar QPE using an X-band radar network is critically assessed.


2020 ◽  
Vol 59 (4) ◽  
pp. 589-604 ◽  
Author(s):  
John Y. N. Cho ◽  
James M. Kurdzo

ABSTRACTA monetized flash flood casualty reduction benefit model is constructed for application to meteorological radar networks. Geospatial regression analyses show that better radar coverage of the causative rainfall improves flash flood warning performance. Enhanced flash flood warning performance is shown to decrease casualty rates. Consequently, these two effects in combination allow a model to be formed that links radar coverage to flash flood casualty rates. When this model is applied to the present-day contiguous U.S. weather radar network, results yield a flash flood–based benefit of $316 million (M) yr−1. The remaining benefit pools are more modest ($13 M yr−1 for coverage improvement and $69 M yr−1 maximum for all areas of radar quantitative precipitation estimation improvements), indicative of the existing weather radar network’s effectiveness in supporting the flash flood warning decision process.


2019 ◽  
Vol 20 (5) ◽  
pp. 999-1014 ◽  
Author(s):  
Stephen B. Cocks ◽  
Lin Tang ◽  
Pengfei Zhang ◽  
Alexander Ryzhkov ◽  
Brian Kaney ◽  
...  

Abstract The quantitative precipitation estimate (QPE) algorithm developed and described in Part I was validated using data collected from 33 Weather Surveillance Radar 1988-Doppler (WSR-88D) radars on 37 calendar days east of the Rocky Mountains. A key physical parameter to the algorithm is the parameter alpha α, defined as the ratio of specific attenuation A to specific differential phase KDP. Examination of a significant sample of tropical and continental precipitation events indicated that α was sensitive to changes in drop size distribution and exhibited lower (higher) values when there were lower (higher) concentrations of larger (smaller) rain drops. As part of the performance assessment, the prototype algorithm generated QPEs utilizing a real-time estimated and a fixed α were created and evaluated. The results clearly indicated ~26% lower errors and a 26% better bias ratio with the QPE utilizing a real-time estimated α as opposed to using a fixed value as was done in previous studies. Comparisons between the QPE utilizing a real-time estimated α and the operational dual-polarization (dual-pol) QPE used on the WSR-88D radar network showed the former exhibited ~22% lower errors, 7% less bias, and 5% higher correlation coefficient when compared to quality controlled gauge totals. The new QPE also provided much better estimates for moderate to heavy precipitation events and performed better in regions of partial beam blockage than the operational dual-pol QPE.


Sign in / Sign up

Export Citation Format

Share Document