scholarly journals Weather Radar Network Benefit Model for Flash Flood Casualty Reduction

2020 ◽  
Vol 59 (4) ◽  
pp. 589-604 ◽  
Author(s):  
John Y. N. Cho ◽  
James M. Kurdzo

ABSTRACTA monetized flash flood casualty reduction benefit model is constructed for application to meteorological radar networks. Geospatial regression analyses show that better radar coverage of the causative rainfall improves flash flood warning performance. Enhanced flash flood warning performance is shown to decrease casualty rates. Consequently, these two effects in combination allow a model to be formed that links radar coverage to flash flood casualty rates. When this model is applied to the present-day contiguous U.S. weather radar network, results yield a flash flood–based benefit of $316 million (M) yr−1. The remaining benefit pools are more modest ($13 M yr−1 for coverage improvement and $69 M yr−1 maximum for all areas of radar quantitative precipitation estimation improvements), indicative of the existing weather radar network’s effectiveness in supporting the flash flood warning decision process.

2020 ◽  
Vol 5 (5) ◽  
pp. 36-50
Author(s):  
Chiho Kimpara ◽  
Michihiko Tonouchi ◽  
Bui Thi Khanh Hoa ◽  
Nguyen Viet Hung ◽  
Nguyen Minh Cuong ◽  
...  

Geomatics ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 347-368
Author(s):  
Tomeu Rigo ◽  
Maria Carmen Llasat ◽  
Laura Esbrí

The single polarization C-Band weather radar network of the Meteorological Service of Catalonia covers the entire region (32,000 km2), which allows it to apply a series of corrections that improve preliminary estimations of the rainfall field (hourly and daily). In addition, an automatic re-processing using automatic weather stations helps to incorporate ground-based information. The last process of the quantitative precipitation estimation (QPE) is running the end-product again eight days later, when the data have been reviewed and corrected in the case of detecting anomalies in the radar or gauge data. These corrections are applied operationally, with the fields generated and stored automatically. The QPE fields are generated in the GeoTIFF format, allowing easy use with multiple applications and simplifying processes such as quality control. In this way, the analysis of a 10 year period of GeoTIFF QPE daily data compared with ground rainfall values is introduced. The results help to understand different points regarding the functioning of the network such as the dependance on the type of precipitation and the seasonality. In addition, the description of a heavy rainfall episode (22 October 2019) shows the variations and improvements in the different products. The main conclusions refer to how using GeoTIFF combined with point data (rain gauges), it is possible to ensure simple but effective quality control of an operational radar network.


Author(s):  
Mark Weber ◽  
Kurt Hondl ◽  
Nusrat Yussouf ◽  
Youngsun Jung ◽  
Derek Stratman ◽  
...  

AbstractThis article summarizes research and risk reduction that will inform acquisition decisions regarding NOAA’s future national operational weather radar network. A key alternative being evaluated is polarimetric phased-array radar (PAR). Research indicates PAR can plausibly achieve fast, adaptive volumetric scanning, with associated benefits for severe-weather warning performance. We assess these benefits using storm observations and analyses, observing system simulation experiments, and real radar-data assimilation studies. Changes in the number and/or locations of radars in the future network could improve coverage at low altitude. Analysis of benefits that might be so realized indicates the possibility for additional improvement in severe-weather and flash-flood warning performance, with associated reduction in casualties. Simulations are used to evaluate techniques for rapid volumetric scanning and assess data quality characteristics of PAR. Finally, we describe progress in developing methods to compensate for polarimetric variable estimate biases introduced by electronic beam-steering. A research-to-operations (R2O) strategy for the PAR alternative for the WSR-88D replacement network is presented.


Author(s):  
Nawal Husnoo ◽  
Timothy Darlington ◽  
Sebastián Torres ◽  
David Warde

AbstractIn this work, we present a new Quantitative-Precipitation-Estimation (QPE) quality-control (QC) algorithm for the UK weather radar network. The real-time adaptive algorithm uses a neural network (NN) to select data from the lowest useable elevation scan to optimize the combined performance of two other radar data correction algorithms: ground clutter mitigation (using CLEAN-AP) and vertical profile of reflectivity (VPR) correction. The NN is trained using 3D tiles of observed uncontaminated weather signals that are systematically combined with ground-clutter signals collected under dry weather conditions. This approach provides a way to simulate radar signals with a wide range of clutter contamination conditions and with realistic spatial structures while providing the uncontaminated “truth” with respect to which the performance of the QC algorithm can be measured. An evaluation of QPE products obtained with the proposed QC algorithm demonstrates superior performance as compared to those obtained with the QC algorithm currently used in operations. Similar improvements are also illustrated using radar observations from two periods of prolonged precipitation, showing a better balance between overestimation errors from using clutter-contaminated low-elevation radar data and VPR-induced errors from using high-elevation radar data.


2021 ◽  
Vol 13 (3) ◽  
pp. 351
Author(s):  
Zbyněk Sokol ◽  
Jan Szturc ◽  
Johanna Orellana-Alvear ◽  
Jana Popová ◽  
Anna Jurczyk ◽  
...  

Radar-based rainfall information has been widely used in hydrological and meteorological applications, as it provides data with a high spatial and temporal resolution that improve rainfall representation. However, the broad diversity of studies makes it difficult to gather a condensed overview of the usefulness and limitations of radar technology and its application in particular situations. In this paper, a comprehensive review through a categorization of radar-related topics aims to provide a general picture of the current state of radar research. First, the importance and impact of the high temporal resolution of weather radar is discussed, followed by the description of quantitative precipitation estimation strategies. Afterwards, the use of radar data in rainfall nowcasting as well as its role in preparation of initial conditions for numerical weather predictions by assimilation is reviewed. Furthermore, the value of radar data in rainfall-runoff models with a focus on flash flood forecasting is documented. Finally, based on this review, conclusions of the most relevant challenges that need to be addressed and recommendations for further research are presented. This review paper supports the exploitation of radar data in its full capacity by providing key insights regarding the possibilities of including radar data in hydrological and meteorological applications.


2017 ◽  
Vol 19 (1) ◽  
pp. 112-121
Author(s):  
Jeongho Choi ◽  
Myoungsun Han ◽  
Chulsang Yoo ◽  
Jiho Lee

2021 ◽  
Vol 893 (1) ◽  
pp. 012054
Author(s):  
M F Handoyo ◽  
M P Hadi ◽  
S Suprayogi

Abstract A weather radar is an active system remote sensing tool that observes precipitation indirectly. Weather radar has an advantage in estimating precipitation because it has a high spatial resolution (up to 0.5 km). Reflectivity generated by weather radar still has signal interference caused by attenuation factors. Attenuation causes the Quantitative Precipitation Estimation (QPE) by the C-band weather radar to underestimate. Therefore attenuation correction on C-band weather radar is needed to eliminate precipitation estimation errors. This study aims to apply attenuation correction to determine Quantitative Precipitation Estimation (QPE) on the c-band weather radar in Bengkulu in December 2018. Gate-by-gate method attenuation correction with Kraemer approach has applied to c-band weather radar data from the Indonesian Agency for Meteorology and Geophysics (BMKG) weather radar network Bengkulu. This method uses reflectivity as the only input. Quantitative Precipitation Estimation (QPE) has obtained by comparing weather radar-based rain estimates to 10 observation rain gauges over a month with the Z-R relation equation. Root Mean Square Error (RMSE) is used to calculate the estimation error. Weather radar data are processed using Python-based libraries Wradlib and ArcGIS 10.5. As a result, the calculation between the weather radar estimate precipitation and the observed rainfall obtained equation Z=2,65R1,3. The attenuation correction process with Kreamer's approach on the c-band weather radar has reduced error in the Qualitative Precipitation Estimation (QPE). Corrected precipitation has a smaller error value (r = 0.88; RMSE = 8.38) than the uncorrected precipitation (r = 0.83; RMSE = 11.70).


2011 ◽  
Vol 10 (1) ◽  
pp. 8-24 ◽  
Author(s):  
Xin He ◽  
Flemming Vejen ◽  
Simon Stisen ◽  
Torben O. Sonnenborg ◽  
Karsten H. Jensen.

2009 ◽  
Vol 26 (3) ◽  
pp. 474-491 ◽  
Author(s):  
Francesc Junyent ◽  
V. Chandrasekar

Abstract A dense weather radar network is an emerging concept advanced by the Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). In a weather radar environment, the specific radar units employed and the network topology will influence the characteristics of the data obtained. To define this, a general framework is developed to describe the radar network space, and formulations are obtained that can be used for weather radar network characterization. The models developed are useful for quantifying and comparing the performance of different weather radar networks. Starting with system characteristics that are used to specify individual radars, a theoretical basis is developed to extend the concept to network configurations of interest. A general network elemental cell is defined and employed as the parameterized domain over which different coverage aspects (such as detection sensitivity, beam size, and minimum beam height) are studied using analytical tools developed in the paper. Other important parameters are the number of different radars with overlapping coverage at a given point in the network domain and the coverage area and number of radars of a network and its elemental cells. A combination of analytical and numerically derived expressions is employed to obtain these parameters for several configurations. The radar network characterization tools developed are applied to the comparison of individual radar and networked radar configurations of interest. The values used in the calculations illustrate the CASA Integrated Project 1 (IP1) radar network and are compared to other radar systems.


2020 ◽  
Vol 12 (4) ◽  
pp. 789-804 ◽  
Author(s):  
John Y. N. Cho ◽  
James M. Kurdzo

AbstractAn econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is developed for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar coverage. Furthermore, nontornadic thunderstorm wind casualty rates are observed to be negatively correlated with better warning performance. In combination, these statistical relationships form the basis of a cost model that can be differenced between radar network configurations to generate geospatial benefit density maps. This model, applied to the current contiguous U.S. weather radar network, yields a benefit estimate of $207 million (M) yr−1 relative to no radar coverage at all. The remaining benefit pool with respect to enhanced radar coverage and scan update rate is about $36M yr−1. Aggregating these nontornadic thunderstorm wind results with estimates from earlier tornado and flash flood cost reduction models yields a total benefit of $1.12 billion yr−1 for the present-day radars and a remaining radar-based benefit pool of $778M yr−1.


Sign in / Sign up

Export Citation Format

Share Document