Clarifying remotely-retrieved precipitation of shallow marine clouds from the NSF/NCAR Gulfstream V

Author(s):  
Mampi Sarkar ◽  
Paquita Zuidema ◽  
Virendra Ghate

AbstractPrecipitation is a key process within the shallow cloud lifecycle. The Cloud System Evolution in the Trades (CSET) campaign included the first deployment of a 94 GHz Doppler radar and 532 nm lidar. Despite a larger sampling volume, initial mean radar/lidar retrieved rain rates (Schwartz et al. 2019) based on the upward-pointing remote sensor datasets are systematically less than those measured by in-situ precipitation probes in the cumulus regime. Subsequent retrieval improvements produce rainrates that compare better to in-situ values, but still underestimate. Retrieved shallow cumulus drop sizes can remain too small and too few, with an overestimated shape parameter narrowing the raindrop size distribution too much. Three potential causes for the discrepancy are explored: the gamma functional fit to the dropsize distribution, attenuation by rain and cloud water, and an underaccounting of Mie dampening of the reflectivity. A truncated exponential fit may represent the dropsizes below a showering cumulus cloud more realistically, although further work would be needed to fully evaluate the impact of a different dropsize representation upon the retrieval. The rain attenuation is within the measurement uncertainty of the radar. Mie dampening of the reflectivity is shown to be significant, in contrast to previous stratocumulus campaigns with lighter rain rates, and may be difficult to constrain well with the remote measurements. An alternative approach combines an a priori determination of the dropsize distribution width based on the in-situ data with the mean radar Doppler velocity and reflectivity. This can produce realistic retrievals, although a more comprehensive assessment is needed to better characterize the retrieval errors.

2014 ◽  
Vol 53 (11) ◽  
pp. 2524-2537 ◽  
Author(s):  
Liang Liao ◽  
Robert Meneghini ◽  
Ali Tokay

AbstractA framework based on measured raindrop size distribution (DSD) data has been developed to assess uncertainties in DSD models employed in Ku- and Ka-band dual-wavelength radar retrievals. In this study, the rain rates and attenuation coefficients from DSD parameters derived by dual-wavelength algorithms are compared with those directly obtained from measured DSD spectra. The impact of the DSD gamma parameterizations on rain estimation from the Global Precipitation Measurement mission (GPM) Dual-Frequency Precipitation Radar (DPR) is examined for the cases of a fixed shape factor μ as well as for a constrained μ—that is, a μ–Λ relation (a relationship between the shape parameter and slope parameter Λ of the gamma DSD)—by using 11 Particle Size and Velocity (Parsivel) disdrometer measurements with a total number of about 50 000 one-minute spectra that were collected during the Iowa Flood Studies (IFloodS) experiment. It is found that the DPR-like dual-wavelength techniques provide fairly accurate estimates of rain rate and attenuation if a fixed-μ gamma DSD model is used, with the value of μ ranging from 3 to 6. Comparison of the results reveals that the retrieval errors from the μ–Λ relations are generally small, with biases of less than ±10%, and are comparable to the results from a fixed-μ gamma model with μ equal to 3 and 6. The DSD evaluation procedure is also applied to retrievals in which a lognormal DSD model is used.


2016 ◽  
Vol 33 (8) ◽  
pp. 1779-1792 ◽  
Author(s):  
Xinxin Xie ◽  
Raquel Evaristo ◽  
Silke Troemel ◽  
Pablo Saavedra ◽  
Clemens Simmer ◽  
...  

AbstractThis study analyzes radar observations of evaporation in rain and investigates its impact on surface rainfall and atmospheric cooling rates. A 1D model is used to examine the impact of raindrop evaporation on the evolution of the initial raindrop size distribution (DSD), the resulting reflectivity (Z), and differential reflectivity (ZDR) and surface rain rates. Raindrop evaporation leads to a decrease of Z and an increase of ZDR toward the surface because of the depletion of small raindrops that evaporate first and thus enhance the mean raindrop size. The latter effect, however, can be reduced because of the increasing temperature toward the surface and may even lead to a decrease of ZDR toward the surface. Two events with significant rain evaporation, observed simultaneously by a polarimetric X-band radar and a K-band Micro Rain Radar (MRR), offer quite detailed insight into the evaporation process. During the first event, which exhibits an initial ZDR > 1.5 dB in the upper rain column, raindrops undergo relatively weak evaporation as deduced from the decrease of the small raindrop fraction observed by the MRR. The second event is characterized by a lower initial ZDR < 0.5 dB with all raindrops evaporating before reaching the ground. A retrieval scheme for estimating the evaporation-related cooling rate and surface precipitation from polarimetric radar observations below the bright band is derived based on MRR observations. The algorithm is then used to simulate polarimetric X-band radar observations, which might mitigate uncertainties in the surface rainfall retrievals due to evaporation at far distances from the radars and in the case of beam blocking.


Author(s):  
Oluwumi Adetan ◽  
Obiseye Obiyemi

The influence of critical raindrop diameters on the specific rainfall attenuation in Durban (29<sup>o</sup>52'S, 30<sup>o</sup>58'E), South Africa using various rainfall regimes is analyzed in this paper. Different rain rate values representing drizzle, widespread, shower and thunderstorm are selected for the purpose of analysis over the measured raindrop size distribution. The three-parameter lognormal and gamma DSD models with shape parameter of 2 are used to estimate the parameters required to investigate the drop sizes which produce a major contribution to the total specific rainfall attenuation for the selected rain rate values. The computed total specific attenuation increases with increasing frequencies and rain rates. The highest and prevailing contribution to the specific attenuation occurs at  for the stratiform (drizzle or widespread) and convective (shower or thunderstorm) rain types for the models considered.  The total percentage fraction formed by drops in the diameter range 0.5 mm ≤ <em>D</em> ≤ 2.5 mm and 1.0 mm ≤<em> D</em> ≤ 3.0<em> </em>mm<em> </em>are found to be most critical for the specific rain attenuation for the stratiform (drizzle and widespread)  and convective (shower and thunderstorm) rainfall types especially at higher frequencies.


Author(s):  
Oluwumi Adetan ◽  
Obiseye Obiyemi

The influence of critical raindrop diameters on the specific rainfall attenuation in Durban (29<sup>o</sup>52'S, 30<sup>o</sup>58'E), South Africa using various rainfall regimes is analyzed in this paper. Different rain rate values representing drizzle, widespread, shower and thunderstorm are selected for the purpose of analysis over the measured raindrop size distribution. The three-parameter lognormal and gamma DSD models with shape parameter of 2 are used to estimate the parameters required to investigate the drop sizes which produce a major contribution to the total specific rainfall attenuation for the selected rain rate values. The computed total specific attenuation increases with increasing frequencies and rain rates. The highest and prevailing contribution to the specific attenuation occurs at  for the stratiform (drizzle or widespread) and convective (shower or thunderstorm) rain types for the models considered.  The total percentage fraction formed by drops in the diameter range 0.5 mm ≤ <em>D</em> ≤ 2.5 mm and 1.0 mm ≤<em> D</em> ≤ 3.0<em> </em>mm<em> </em>are found to be most critical for the specific rain attenuation for the stratiform (drizzle and widespread)  and convective (shower and thunderstorm) rainfall types especially at higher frequencies.


2014 ◽  
Vol 53 (6) ◽  
pp. 1618-1635 ◽  
Author(s):  
Elisa Adirosi ◽  
Eugenio Gorgucci ◽  
Luca Baldini ◽  
Ali Tokay

AbstractTo date, one of the most widely used parametric forms for modeling raindrop size distribution (DSD) is the three-parameter gamma. The aim of this paper is to analyze the error of assuming such parametric form to model the natural DSDs. To achieve this goal, a methodology is set up to compare the rain rate obtained from a disdrometer-measured drop size distribution with the rain rate of a gamma drop size distribution that produces the same triplets of dual-polarization radar measurements, namely reflectivity factor, differential reflectivity, and specific differential phase shift. In such a way, any differences between the values of the two rain rates will provide information about how well the gamma distribution fits the measured precipitation. The difference between rain rates is analyzed in terms of normalized standard error and normalized bias using different radar frequencies, drop shape–size relations, and disdrometer integration time. The study is performed using four datasets of DSDs collected by two-dimensional video disdrometers deployed in Huntsville (Alabama) and in three different prelaunch campaigns of the NASA–Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) ground validation program including the Hydrological Cycle in Mediterranean Experiment (HyMeX) special observation period (SOP) 1 field campaign in Rome. The results show that differences in rain rates of the disdrometer DSD and the gamma DSD determining the same dual-polarization radar measurements exist and exceed those related to the methodology itself and to the disdrometer sampling error, supporting the finding that there is an error associated with the gamma DSD assumption.


2005 ◽  
Vol 62 (1) ◽  
pp. 220-230 ◽  
Author(s):  
Robert Nissen ◽  
Roland List ◽  
David Hudak ◽  
Greg M. McFarquhar ◽  
R. Paul Lawson ◽  
...  

Abstract For nonconvective, steady light rain with rain rates &lt;5 mm h−1 the mean Doppler velocity of raindrop spectra was found to be constant below the melting band, when the drop-free fall speed was adjusted for pressure. The Doppler radar–weighted raindrop diameters varied from case to case from 1.5 to 2.5 mm while rain rates changed from 1.2 to 2.9 mm h−1. Significant changes of advected velocity moments were observed over periods of 4 min. These findings were corroborated by three independent systems: a Doppler radar for establishing vertical air speed and mean terminal drop speeds [using extended Velocity Azimuth Display (EVAD) analyses], a Joss–Waldvogel disdrometer at the ground, and a Particle Measuring System (PMS) 2-DP probe flown on an aircraft. These measurements were supported by data from upper-air soundings. The reason why inferred raindrop spectra do not change with height is the negligible interaction rate between raindrops at low rain rates. At low rain rates, numerical box models of drop collisions strongly support this interpretation. It was found that increasing characteristic drop diameters are correlated with increasing rain rates.


2007 ◽  
Vol 10 ◽  
pp. 145-152 ◽  
Author(s):  
O. P. Prat ◽  
A. P. Barros

Abstract. A study of the evolution of raindrop spectra (raindrop size distribution, DSD) between cloud base and the ground surface was conducted using a column model of stochastic coalescense-breakup dynamics. Numerical results show that, under steady-state boundary conditions (i.e. constant rainfall rate and DSD at the top of the rainshaft), the equilibrium DSD is achieved only for high rain rates produced by midlevel or higher clouds and after long simulation times (~30 min or greater). Because these conditions are not typical of most rainfall, the results suggest that the theoretical equilibrium DSD might not be attainable for the duration of individual rain events, and thus DSD observations from field experiments should be analyzed conditional on the specific storm environment under which they were obtained.


2019 ◽  
Vol 16 (8) ◽  
pp. 1175-1179 ◽  
Author(s):  
Eugene S. Hong ◽  
Steven Lane ◽  
David Murrell ◽  
Nicholas Tarasenko ◽  
Christos Christodoulou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document