scholarly journals Distributed sensing of wind direction using fiber-optic cables

Author(s):  
Anita Freundorfer ◽  
Karl Lapo ◽  
Johann Schneider ◽  
Christoph K. Thomas

AbstractIn the atmospheric boundary layer, phenomena exist with challenging properties such as spatial heterogeneity, particularly during stable weak wind situations. Studying spatially heterogeneous features requires spatially distributed measurements on fine spatial and temporal scales. Fiber-Optic Distributed Sensing (FODS) can provide spatially distributed measurements, simultaneously offering a spatial resolution on the order of decimeters and a temporal resolution on the order of seconds. While FODS has already been deployed to study various variables, FODS wind direction sensing has only been demonstrated in idealized wind tunnel experiments. We present the first distributed observations of FODS wind directions from field data. The wind direction sensing is accomplished by using pairs of actively heated fiber optic cables with cone-shaped microstructures attached to them. Here we present three different methods of calculating wind directions from the FODS measurements, two based on using combined wind speed and direction information and one deriving wind direction independently from FODS wind speed. For each approach, the effective temporal and spatial resolution is quantified using spectral coherence. With each method of calculating wind directions, temporal resolutions on the order of tens of seconds can be achieved. The accuracy of FODS wind directions was evaluated against a sonic anemometer, showing deviations of less than 15° most of the time. The applicability of FODS for wind direction measurements in different environmental conditions is tested by analysing the dependence of FODS wind direction accuracy and observable scales on environmental factors. Finally, we demonstrate the potential of this technique by presenting a period that displays spatial and temporal structures in the wind direction.

2021 ◽  
Author(s):  
Karl Lapo ◽  
Anita Freundorfer ◽  
Antonia Fritz ◽  
Johann Schneider ◽  
Johannes Olesch ◽  
...  

Abstract. The weak-wind Stable Boundary Layer (wwSBL) is poorly described by theory and breaks basic assumptions necessary for observations of turbulence. Understanding the wwSBL requires distributed observations capable of separating between submeso and turbulent scales. To this end, we present the Large Eddy Observatory, Voitsumra Experiment 2019 (LOVE19) which featured 1350 m of fiber optic distributed sensing (FODS) of air temperature and wind speed, as well as an experimental wind direction method, at scales as fine as 1 s and 0.127 m in addition to a suite of point observations of turbulence and ground-based remote sensing. Additionally, flights with a fiber optic cable attached to a tethered balloon provide an unprecedented detailed view of the boundary layer structure with a resolution of 0.254 m and 10 s between 1–200 m height. Two examples are provided demonstrating the unique capabilities of the LOVE19 data for examining boundary layer processes: 1) FODS observations between 1m and ~200 m height during a period of gravity waves propagating across the entire boundary layer and 2) tracking a near-surface, transient submeso structure that causes an intermittent burst of turbulence. All data can be accessed at Zenodo through the DOI https://doi.org/10.5281/zenodo.4312976 (Lapo et al., 2020a).


2020 ◽  
Vol 13 (3) ◽  
pp. 1563-1573 ◽  
Author(s):  
Karl Lapo ◽  
Anita Freundorfer ◽  
Lena Pfister ◽  
Johann Schneider ◽  
John Selker ◽  
...  

Abstract. The weak-wind boundary layer is characterized by turbulent and submesoscale motions that break the assumptions necessary for using traditional eddy covariance observations such as horizontal homogeneity and stationarity, motivating the need for an observational system that allows spatially resolving measurements of atmospheric flows near the surface. Fiber-optic distributed sensing (FODS) potentially opens the door to observing a wide range of atmospheric processes on a spatially distributed basis and to date has been used to resolve the turbulent fields of air temperature and wind speed on scales of seconds and decimeters. Here we report on progress developing a FODS technique for observing spatially distributed wind direction. We affixed microstructures shaped as cones to actively heated fiber-optic cables with opposing orientations to impose directionally sensitive convective heat fluxes from the fiber-optic cable to the air, leading to a difference in sensed temperature that depends on the wind direction. We demonstrate the behavior of a range of microstructure parameters including aspect ratio, spacing, and size and develop a simple deterministic model to explain the temperature differences as a function of wind speed. The mechanism behind the directionally sensitive heat loss is explored using computational fluid dynamics simulations and infrared images of the cone-fiber system. While the results presented here are only relevant for observing wind direction along one dimension, it is an important step towards the ultimate goal of a full three-dimensional, distributed flow sensor.


2019 ◽  
Author(s):  
Karl Lapo ◽  
Anita Freundorfer ◽  
Lena Pfister ◽  
Johann Schneider ◽  
John Selker ◽  
...  

Abstract. The weak-wind boundary layer is characterized by turbulent and submeso-scale motions that break the assumptions necessary for using traditional eddy covariance observations such as horizontal homogeneity and stationarity, motivating the need for an observational system that allows spatially resolving measurements of atmospheric flows near the surface. Fiber-Optic Distributed Sensing (FODS) potentially opens the door to observing a wide-range of atmospheric processes on a spatially distributed basis and to date has been used to resolve the turbulent fields of air temperature and wind speed on scales of second and decimeters. Here we report on progress developing a FODS technique for observing spatially distributed wind direction. We affixed microstructures shaped as cones to actively-heated fiber-optic cables with opposing orientations to impose directionally-sensitive convective heat fluxes from the fiber-optic cable to the air, leading to a difference in sensed temperature that depends on the wind direction. We demonstrate the behavior of a range of microstructure parameters including aspect ratio, spacing, and size and develop a simple deterministic model to explain the temperature differences as a function of wind speed. The mechanism behind the directionally-sensitive heat loss is explored using Computational Fluid Dynamics simulations and infrared images of the cone-fiber system. While the results presented here are only relevant for observing wind direction along one dimension it is an important step towards the ultimate goal of a full three-dimensional, distributed flow sensor.


2020 ◽  
Vol 8 (9) ◽  
pp. 626
Author(s):  
Yong Wan ◽  
Xiaolei Shi ◽  
Yongshou Dai ◽  
Ligang Li ◽  
Xiaojun Qu ◽  
...  

Synthetic aperture radar (SAR) can extract sea surface wind speed information. To extract wind speed information through the geophysical model function (GMF), the corresponding wind direction information must be input. This article introduces some concepts about networked SAR satellites. The networked satellites enable multiple SARs to observe the same sea surface at different incidence angles at the same time. Aiming at the X-band networked SAR data with different incident angles, the cost function is established by using the GMF. By minimizing the cost function, accurate wind speed information can be extracted without inputting wind direction information. When the noise is small, the wind direction information is introduced, and the accuracy of the extracted wind speed will be improved. When the noise is less than 1 dB and the incident angle is greater than 30°, the root-mean-square error (RMSE) of the wind speed extracted by this method is basically less than 2 m/s.


2018 ◽  
Vol 11 (6) ◽  
pp. 3801-3814 ◽  
Author(s):  
Norman Wildmann ◽  
Nikola Vasiljevic ◽  
Thomas Gerz

Abstract. In the context of the Perdigão 2017 experiment, the German Aerospace Center (DLR) deployed three long-range scanning Doppler lidars with the dedicated purpose of investigating the wake of a single wind turbine at the experimental site. A novel method was tested for the first time to investigate wake properties with ground-based lidars over a wide range of wind directions. For this method, the three lidars, which were space- and time-synchronized using the WindScanner software, were programmed to measure with crossing beams at individual points up to 10 rotor diameters downstream of the wind turbine. Every half hour, the measurement points were adapted to the current wind direction to obtain a high availability of wake measurements in changing wind conditions. The linearly independent radial velocities where the lidar beams intersect allow the calculation of the wind vector at those points. Two approaches to estimating the prevailing wind direction were tested throughout the campaign. In the first approach, velocity azimuth display (VAD) scans of one of the lidars were used to calculate a 5 min average of wind speed and wind direction every half hour, whereas later in the experiment 5 min averages of sonic anemometer measurements of a meteorological mast close to the wind turbine became available in real time and were used for the scanning adjustment. Results of wind speed deficit measurements are presented for two measurement days with varying northwesterly winds, and it is evaluated how well the lidar beam intersection points match the actual wake location. The new method allowed wake measurements to be obtained over the whole measurement period, whereas a static scanning setup would only have captured short periods of wake occurrences.


2018 ◽  
Author(s):  
Norman Wildmann ◽  
Nikola Vasiljevic ◽  
Thomas Gerz

Abstract. In the context of the Perdigão 2017 experiment, the German Aerospace Center (DLR) deployed three long-range scanning Doppler lidars with the dedicated purpose of investigating the wake of a single wind turbine at the experimental site. A novel method was established to investigate wake properties with ground-based lidars over a wide range of wind directions. For this method, the three lidars, which were space- and time-synchronized using the WindScanner software, were programmed to measure with crossing beams at individual points up to ten rotor diameters downstream the wind turbine. Every half hour, the measurement points were adapted to the current wind direction to obtain a high availability of wake measurements in changing wind conditions. The linearly independent radial velocities where the lidar beams intersect allow the calculation of the wind vector at those points. Two approaches to estimate the prevailing wind direction were tested throughout the campaign. In the first approach, VAD scans of one of the lidars were used to calculate a five-minute average of wind speed and wind direction every half hour, whereas later in the experiment, five-minute averages of sonic anemometer measurements of a meteorological mast close to the wind turbine became available in real-time and were used for the scanning adjustment. Results of wind speed deficit measurements are presented for two measurement days with varying westerly winds and it is evaluated how well the lidar beam intersection points match the actual wake location. The new method allowed to obtain wake measurements over the whole measurement period, whereas a static scanning setup would only have captured short periods of wake occurrences. The analysed cases reveal that state-of-the-art engineering models for wakes underestimate the actual wind speed deficit.


2009 ◽  
Vol 26 (3) ◽  
pp. 582-592 ◽  
Author(s):  
Harry C. Friebel ◽  
Thomas O. Herrington ◽  
Alexander Y. Benilov

Abstract In June 2002, a high-frequency air–sea momentum system was deployed in the surf zone for 3 days as part of an experiment to quantify air–sea momentum transfer when the wind and wave direction were at angles. The system obtained measurements in the nearshore via a high-resolution Campbell Scientific CSAT3 3D sonic anemometer and five high-frequency saltwater wave staffs. An advantage of the air–sea momentum system is that direct measurements of the atmospheric turbulent fluctuations can be obtained and applied to the calculation of momentum transfer at the air–sea interface. The Campbell Scientific CSAT3 sonic anemometer was postcalibrated under turbulent wind conditions to determine incident wind direction measurements influenced by the geometry of the instrument. Measurement results are compared to a pre-established benchmark, constant tow speed; and the mean wind speed, incident wind direction, and spectral density characteristics are evaluated to resolve specific instrument orientations in which the measurements are corrupted by the head and probe supports of the sonic anemometer. Calibration testing of the sonic anemometer determined that the mean wind speeds are reduced by 16% over a 40° range for incident wind angles of 160°–200° relative to the head of the anemometer. Tilting the anemometer is found to decrease mean wind speed reduction influenced by the geometry of the anemometer. Variations in the measured wind directions were found to be greater than 1° for incident wind angles between 160° and 200° for 0° and 10° of tilt. Spectral characteristics were highly repeatable for all wind angles except for incident wind angles of 180° for 0° and 10° of tilt.


Sign in / Sign up

Export Citation Format

Share Document